AutoAWQ Kernels implements the AWQ kernels.
Project description
AutoAWQ Kernels
AutoAWQ Kernels is a new package that is split up from the main repository in order to avoid compilation times.
Requirements
-
Windows: Must use WSL2.
-
NVIDIA:
- GPU: Must be compute capability 7.5 or higher.
- CUDA Toolkit: Must be 11.8 or higher.
-
AMD:
- ROCm: Must be 5.6 or higher.
Install
Install from PyPi
The package is available on PyPi with CUDA 12.1.1 wheels:
pip install autoawq-kernels
Install release wheels
For ROCm and other CUDA versions, you can use the wheels published at each release:
pip install https://github.com/casper-hansen/AutoAWQ_kernels/releases/download/v0.0.2/autoawq_kernels-0.0.2+rocm561-cp310-cp310-linux_x86_64.whl
Build from source
You can also build from source:
git clone https://github.com/casper-hansen/AutoAWQ_kernels
cd AutoAWQ_kernels
pip install -e .
To build for ROCm, you need to first install the following packages rocsparse-dev hipsparse-dev rocthrust-dev rocblas-dev hipblas-dev
.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distributions
Close
Hashes for autoawq_kernels-0.0.3-cp311-cp311-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 70fd49b111d55dfe4105d84d529d6f59b28a6f63c9a71efa7252c19b1872bf70 |
|
MD5 | a77f6a41b1c511da53c236b8e60711a0 |
|
BLAKE2b-256 | 9c2303a2c803584407778c804b6bde04df54e4baba415db2fd1d1c39293f6a7c |
Close
Hashes for autoawq_kernels-0.0.3-cp311-cp311-manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fce3d58f7afcaf58ec8f0aefe26f4d36d1a43b6169a2e34a45dd0d0cb308b8b5 |
|
MD5 | 15da8afd0a045df633d1b3ae9e89b4a2 |
|
BLAKE2b-256 | b95ecb67292a2a983d17242a3dbb450c91ebde0373350871b73a6f7e47a17a0d |
Close
Hashes for autoawq_kernels-0.0.3-cp310-cp310-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 70d6f2865b69f101313d6300c82785cc3c770a62278915cff0b6dfddcc4b6990 |
|
MD5 | 04ccb830ff57e699cbd1570212f1f6a1 |
|
BLAKE2b-256 | 1cb05dd603e1e10ea729e4ed7d1d0813cd7cb6e097cd933b8f0f2dced6a395e3 |
Close
Hashes for autoawq_kernels-0.0.3-cp310-cp310-manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5f67b1d0a4078424e1c1e478817cf139b88c2462e15cbfd1c44f79859fd7415a |
|
MD5 | 98e6e67abacd9816b089bc645b822f33 |
|
BLAKE2b-256 | a7b4c78d3364be31226a67630e95e694c42ada9a72e8321a164ab8e7c8063816 |
Close
Hashes for autoawq_kernels-0.0.3-cp39-cp39-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5bb7832f524142e9a8e093c20a9b1896a050092bde58a1e368be9b786aadf9bf |
|
MD5 | b3d13ab48768c2ff34205dc61372426a |
|
BLAKE2b-256 | cdfeb238ebbee38571e821a1b8f2cc0665ecb559e5b922bb183a826c835c9910 |
Close
Hashes for autoawq_kernels-0.0.3-cp39-cp39-manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f6d95c4794378dc6844cad76befee83b0439b6b61fd99f8a7207fd588277bc10 |
|
MD5 | bb0745e9b672c52cff4a6f2b76f53ca1 |
|
BLAKE2b-256 | a2a58ed5a6d3dee76303827b652270d9d67288574a4a4fba499cc6859b9a7c6e |
Close
Hashes for autoawq_kernels-0.0.3-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 04b3816c7d0a8dcb612da252fdf7fdddcacdd85047323e92c18939380f997394 |
|
MD5 | 12bdc6250693f049c09c6a3e889ae087 |
|
BLAKE2b-256 | 94e1acdce86c858d041e76c38960a22d537ea548c659964f9ff943dda0d30c16 |
Close
Hashes for autoawq_kernels-0.0.3-cp38-cp38-manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9fbd0e22d759fb75d42636f041b79b2654515b8eed420b2c89462c4574d04060 |
|
MD5 | e94e673569ad679bb4dc8fb357c476ea |
|
BLAKE2b-256 | f35f030d8cd1c363aa6f543fcbbedd3476d7bfb01375126507f02cd3619b9b3c |