Autocare Tx Model
Project description
Autocare DLT
Autocare DeepLearning Toolkit은 SNUAILAB의 모델 개발 및 Autocare T의 학습을 지원하기 위한 pytorch 기반 deep learning toolkit입니다.
Updates
- v0.2
- HPO 추가
- Mutli-GPU 지원
- inference 및 data_selection에서 coco input 지원
설치
Prerequisite
- Python >= 3.9
- CUDA == 11.3
- pytorch >= 1.12.1 (link)
- torchvision >= 0.13.1
Install
- tx_model은 repo를 clone하여 CLI로 사용하는 방식 및 python package(*.whl) 파일을 통하여 설치하는 방법 2가지를 지원한다.
git clone
git clone git@github.com:snuailab/autocare_dlt.git
cd autocare_dlt
pip install -r requirements.txt
package 설치
pip install autocare_dlt
실행
Model config 준비
- 기본적인 template은 ./models참조
- 사용하고자 하는 Model에 맞춰서 config값 수정
- 모듈에 따라 hyper-parameter값이 다양해지기 때문에 해당 모듈의 code를 참조하여 수정 할 것을 권장
Data config 준비
- 기본적인 template은 ./datasets 참조
- 사용하고자 하는 Dataset에 맞춰서 config값 수정
- workers_per_gpu (int) : dataloader work 갯수
- batch_size_per_gpu (int): GPU당 batch size
- img_size (int): 모델의 image size (img_size, img_size) → 추후 업데이트 예정
- train, val, test, unlabeled (dict): 각 dataset의 config
- type: dataset의 type
- data_root: data의 root path
- ann: annotation 파일의 path
- input_paths (unlabeled data only): unlabled data 파일 리스트
- dir path : "data_root: ''" 로 맞추어 사용 할것
- *.txt
- *.json(coco형식)
- augmentation: data augmentation세팅
- CV2 모듈들이 먼저 적용되고 pytorch(torchvision) 모듈 적용됨
- top down 순서대로 적용
지원 하는 package Tools
- 해당 tool들을 import하여 사용 혹은 cli로 실행
autocare_dlt.tools.train.run(exp_name: str, model_cfg: str, data_cfg: str, gpus: str = '0', ckpt: ~typing.Union[str, dict] = None, world_size: int = 1, output_dir: str = 'outputs', resume: bool = False, fp16: bool = False, ema: bool = False)→ tooNone
Run training
Parameters
-
exp_name (str) – experiment name. a folder with this name will be created in the
output_dir
, and the log files will be saved there. -
model_cfg (str) – path for model configuration file
-
data_cfg (str) – path for dataset configuration file
-
gpus (str, optional) – GPU IDs to use. Default to ‘0’
-
ckpt (str, optional) – path for checkpoint file. Defaults to None.
-
world_size (int, optional) – world size for ddp. Defaults to 1.
-
output_dir (str, optional) – log output directory. Defaults to ‘outputs’.
-
resume (bool, optional) – whether to resume the previous training or not. Defaults to False.
-
fp16 (bool, optional) – whether to use float point 16 or not. Defaults to False.
-
ema (bool, optional) – whether to use EMA(exponential moving average) or not. Defaults to False.
autocare_dlt.tools.inference.run(inputs: str, model_cfg: str, output_dir: str, gpus: str, ckpt: Union[str, dict], input_size: list = None, letter_box: bool = None, vis: bool = False, save_imgs: bool = False, root_dir: str = '')→ None
Run inference
Parameters
-
inputs (str) – path for input - image, directory, or json
-
model_cfg (str) – path for model configuration file
-
output_dir (str) – path for inference results
-
gpus (str) – GPU IDs to use
-
ckpt (Union[str, dict]) – path for checkpoint file or state dict
-
input_size (list, optional) – input size of model inference. Defaults to [640].
-
letter_box (bool, optional) – whether to use letter box or not. Defaults to False.
-
vis (bool, optional) – whether to visualize inference in realtime or not. Defaults to False.
-
save_imgs (bool, optional) – whether to draw and save inference results as images or not. Defaults to False.
-
root_dir (str, optional) – path for input image when using json input. Defaults to “”.
autocare_dlt.tools.eval.run(model_cfg: str, data_cfg: str, gpus: str, ckpt: Union[str, dict])→ None
Evaluate a model
Parameters
-
model_cfg (str) – path for model configuration file
-
data_cfg (str) – path for dataset configureation file
-
gpus (str) – GPU IDs to use
-
ckpt (Union[str, dict]) – path for checkpoint file or state dict
autocare_dlt.tools.export_onnx.run(output_name: str, model_cfg: str, ckpt: Union[str, dict], input_size: list = None, opset: int = 11, no_onnxsim: bool = False)→ None
Export onnx file
Parameters
-
output_name (str) – file name for onnx output (.onnx)
-
model_cfg (str) – path for model configuration file
-
ckpt (Union[str, dict]) – path for checkpoint file or state dict
-
input_size (list, optional) – input size of model. use model config value if input_size is None. Default to None.
-
opset (int, optional) – onnx opset version. Defaults to 11.
-
no_onnxsim (bool, optional) – whether to use onnxsim or not. Defaults to False.
autocare_dlt.tools.data_selection.run(model_cfg: str, ckpt: Union[str, dict], inputs: str, num_outputs: int, output_dir: str, gpus: str, input_size: list = None, letter_box: bool = None, copy_img: bool = False, root_dir: str = '')→ None
Select active learning data
Parameters
-
model_cfg (str) – path for model configuration file
-
ckpt (Union[str, dict]) – path for checkpoint file or state dict
-
inputs (str) – path for input - image, directory, or json
-
num_outputs (int) – number of images to select
-
output_dir (str) – path for output result
-
gpus (str) – GPU IDs to use
-
input_size (list, optional) – input size of model inference. Defaults to [640].
-
letter_box (bool, optional) – whether to use letter box or not. Defaults to False.
-
copy_img (bool, optional) – whether to copy images to output. Defaults to False.
-
root_dir (str, optional) – path for input image when using json input. Defaults to “”.
autocare_dlt.tools.hpo.run(exp_name: str, model_cfg: str, data_cfg: str, hpo_cfg: str = None gpus: str = '0', ckpt: ~typing.Union[str, dict] = None, world_size: int = 1, output_dir: str = 'outputs', resume: bool = False, fp16: bool = False, ema: bool = False)→ None
Run Hyperparameter Optimization
Parameters
-
exp_name (str) – experiment name. a folder with this name will be created in the
output_dir
, and the log files will be saved there. -
model_cfg (str) – path for model configuration file
-
data_cfg (str) – path for dataset configuration file
-
hpo_cfg (str, optional): path for hpo configuration file. Default to None.
-
gpus (str, optional) – GPU IDs to use. Default to ‘0’
-
ckpt (str, optional) – path for checkpoint file. Defaults to None.
-
world_size (int, optional) – world size for ddp. Defaults to 1.
-
output_dir (str, optional) – log output directory. Defaults to ‘outputs’.
-
resume (bool, optional) – whether to resume the previous training or not. Defaults to False.
-
fp16 (bool, optional) – whether to use float point 16 or not. Defaults to False.
-
ema (bool, optional) – whether to use EMA(exponential moving average) or not. Defaults to False.
CLI 명령어 예시
Supervised Learning
python autocare_dlt/tools/train.py --exp_name {your_exp} --model_cfg {path}/{model}.json --data_cfg {path}/{data}.json} --ckpt {path}/{ckpt}.pth --gpus {gpu #}
Distributed training (Multi-GPU training)
Multi-GPU 훈련을 진행하기 위해서는 'python'이 아닌 'torchrun'을 이용해야 함
torchrun autocare_dlt/tools/train.py --exp_name {your_exp} --model_cfg {path}/{model}.json --data_cfg {path}/{data}.json} --ckpt {path}/{ckpt}.pth --gpus {gpu #,#,...} --multi_gpu True
[권장] 같은 서버에서 다수의 Multi-GPU 훈련을 하기 위해서는 아래 명령어를 이용해야 함
torchrun --rdzv_backend=c10d --rdzv_endpoint=localhost:0 --nnodes=1 autocare_dlt/tools/train.py --exp_name {your_exp} --model_cfg {path}/{model}.json --data_cfg {path}/{data}.json} --ckpt {path}/{ckpt}.pth --gpus {gpu #,#,...}
- training 결과는 outputs/{your_exp} 위치에 저장됨
run evaluation
python autocare_dlt/tools/eval.py --model_cfg {path}/{model}.json --data_cfg {path}/{data}.json} --ckpt {path}/{ckpt}.pth --gpus 0
export onnx
python autocare_dlt/tools/export_onnx.py --output_name {path}/{model_name}.onnx --model_cfg {path}/{model}.json --batch_size 1 --ckpt {path}/{ckpt}.pth
run inference
- OCR관련
- Prerequest : 한글 폰트 파일 (ex. NanumPen.ttf)
python tools/inference.py --inputs {path}/{input_dir, img, video, coco json} --model_cfg {path}/{model}.json --output_dir {path}/{output dir name} --ckpt {path}/{model_name}.pth --input_size {width} {height} --gpus {gpu_id} (optional)--root_dir {root path of coco}
run data selection
python tools/data_selection.py --inputs {path}/{input_dir, cocojson} --model_cfg {path}/{model}.json --output_dir {path}/{output dir name} --ckpt {path}/{model_name}.pth --num_outputs {int} --input_size {width} {height} --letter_box {bool} --gpus {gpu_id} (optional)--root_dir {root path of coco}
References
This code is based on and inspired on those repositories (TBD)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file autocare_dlt-0.2.3.tar.gz
.
File metadata
- Download URL: autocare_dlt-0.2.3.tar.gz
- Upload date:
- Size: 14.4 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c08417cedb85a5eef7adb55670599e24af9d08cf1ca952f09a9e4483828f9b61 |
|
MD5 | e6bdb5f8ec012f685efc3248236b7bfa |
|
BLAKE2b-256 | 5b6f663360446f38915f1eebb7f74fd724ae96ea091a218e2a6e81b94f82fdb1 |
File details
Details for the file autocare_dlt-0.2.3-py3-none-any.whl
.
File metadata
- Download URL: autocare_dlt-0.2.3-py3-none-any.whl
- Upload date:
- Size: 14.6 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b7e7800e42ca5a3ae8a2a18008ea103591a468893f4d819ca0ac5358e7ff6ee6 |
|
MD5 | 49dfb8ac78bbd062854592738b985a30 |
|
BLAKE2b-256 | ce8da5279e4fda1dd6910ce45c0c719a7140fbcc007db3624dfedd9cd3d93713 |