Skip to main content

Classy Probabilistic Programming

Project description

PyAutoFit: Classy Probabilistic Programming

.. |binder| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/Jammy2211/autofit_workspace/HEAD

.. |JOSS| image:: https://joss.theoj.org/papers/10.21105/joss.02550/status.svg :target: https://doi.org/10.21105/joss.02550

|binder| |JOSS|

Installation Guide <https://pyautofit.readthedocs.io/en/latest/installation/overview.html>_ | readthedocs <https://pyautofit.readthedocs.io/en/latest/index.html>_ | Introduction on Binder <https://mybinder.org/v2/gh/Jammy2211/autofit_workspace/release?filepath=introduction.ipynb>_ | HowToFit <https://pyautofit.readthedocs.io/en/latest/howtofit/howtofit.html>_

PyAutoFit is a Python-based probabilistic programming language which:

  • Makes it simple to compose and fit mult-level models using a range of Bayesian inference libraries, such as emcee <https://github.com/dfm/emcee>_ and dynesty <https://github.com/joshspeagle/dynesty>_.

  • Handles the 'heavy lifting' that comes with model-fitting, including model composition & customization, outputting results, model-specific visualization and posterior analysis.

  • Is built for big-data analysis, whereby results are output as a sqlite database which can be queried after model-fitting is complete.

PyAutoFit supports advanced statistical methods such as massively parallel non-linear search grid-searches <https://pyautofit.readthedocs.io/en/latest/features/search_grid_search.html>, chaining together model-fits <https://pyautofit.readthedocs.io/en/latest/features/search_chaining.html> and sensitivity mapping <https://pyautofit.readthedocs.io/en/latest/features/sensitivity_mapping.html>_.

Getting Started

The following links are useful for new starters:

  • The introduction Jupyter Notebook on Binder <https://mybinder.org/v2/gh/Jammy2211/autofit_workspace/release?filepath=introduction.ipynb>_, where you can try PyAutoFit in a web browser (without installation).

  • The PyAutoFit readthedocs <https://pyautofit.readthedocs.io/en/latest>, which includes an installation guide <https://pyautofit.readthedocs.io/en/latest/installation/overview.html> and an overview of PyAutoFit's core features.

  • The autofit_workspace GitHub repository <https://github.com/Jammy2211/autofit_workspace>, which includes example scripts and the HowToFit Jupyter notebook tutorials <https://github.com/Jammy2211/autofit_workspace/tree/master/notebooks/howtofit> which give new users a step-by-step introduction to PyAutoFit.

Why PyAutoFit?

PyAutoFit began as an Astronomy project for fitting large imaging datasets of galaxies after the developers found that existing PPLs (e.g., PyMC3 <https://github.com/pymc-devs/pymc3>, Pyro <https://github.com/pyro-ppl/pyro>, STAN <https://github.com/stan-dev/stan>_) were not suited to the model fitting problems many Astronomers faced. This includes:

  • Efficiently analysing large and homogenous datasets with an identical model fitting procedure, with tools for processing the large libraries of results output.

  • Problems where likelihood evaluations are expensive (e.g. run times of days per model-fit), necessitating highly customizable model-fitting pipelines with support for massively parallel computing.

  • Fitting many different models to the same dataset with tools that streamline model comparison.

If these challenges sound familiar, then PyAutoFit may be the right software for your model-fitting needs!

API Overview

To illustrate the PyAutoFit API, we'll use an illustrative toy model of fitting a one-dimensional Gaussian to noisy 1D data. Here's the data (black) and the model (red) we'll fit:

.. image:: https://raw.githubusercontent.com/rhayes777/PyAutoFit/master/files/toy_model_fit.png :width: 400 :alt: Alternative text

We define our model, a 1D Gaussian by writing a Python class using the format below:

.. code-block:: python

class Gaussian:

    def __init__(
        self,
        centre=0.0,     # <- PyAutoFit recognises these
        intensity=0.1,  # <- constructor arguments are
        sigma=0.01,     # <- the Gaussian's parameters.
    ):
        self.centre = centre
        self.intensity = intensity
        self.sigma = sigma

    """
    An instance of the Gaussian class will be available during model fitting.

    This method will be used to fit the model to data and compute a likelihood.
    """

    def profile_from_xvalues(self, xvalues):

        transformed_xvalues = xvalues - self.centre

        return (self.intensity / (self.sigma * (2.0 * np.pi) ** 0.5)) * \
                np.exp(-0.5 * (transformed_xvalues / self.sigma) ** 2.0)

PyAutoFit recognises that this Gaussian may be treated as a model component whose parameters can be fitted for via a non-linear search like emcee <https://github.com/dfm/emcee>_.

To fit this Gaussian to the data we create an Analysis object, which gives PyAutoFit the data and a log_likelihood_function describing how to fit the data with the model:

.. code-block:: python

class Analysis(af.Analysis):

    def __init__(self, data, noise_map):

        self.data = data
        self.noise_map = noise_map

    def log_likelihood_function(self, instance):

        """
        The 'instance' that comes into this method is an instance of the Gaussian class
        above, with the parameters set to values chosen by the non-linear search.
        """

        print("Gaussian Instance:")
        print("Centre = ", instance.centre)
        print("Intensity = ", instance.intensity)
        print("Sigma = ", instance.sigma)

        """
        We fit the ``data`` with the Gaussian instance, using its
        "profile_from_xvalues" function to create the model data.
        """

        xvalues = np.arange(self.data.shape[0])

        model_data = instance.profile_from_xvalues(xvalues=xvalues)
        residual_map = self.data - model_data
        chi_squared_map = (residual_map / self.noise_map) ** 2.0
        log_likelihood = -0.5 * sum(chi_squared_map)

        return log_likelihood

We can now fit our model to the data using a non-linear search:

.. code-block:: python

model = af.Model(Gaussian)

analysis = Analysis(data=data, noise_map=noise_map)

emcee = af.Emcee(nwalkers=50, nsteps=2000)

result = emcee.fit(model=model, analysis=analysis)

The result contains information on the model-fit, for example the parameter samples, maximum log likelihood model and marginalized probability density functions.

Support

Support for installation issues, help with Fit modeling and using PyAutoFit is available by raising an issue on the GitHub issues page <https://github.com/rhayes777/PyAutoFit/issues>_.

We also offer support on the PyAutoFit Slack channel <https://pyautoFit.slack.com/>, where we also provide the latest updates on PyAutoFit. Slack is invitation-only, so if you'd like to join send an email <https://github.com/Jammy2211> requesting an invite.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autofit-2021.8.12.1.tar.gz (9.6 MB view details)

Uploaded Source

Built Distribution

autofit-2021.8.12.1-py3-none-any.whl (2.9 MB view details)

Uploaded Python 3

File details

Details for the file autofit-2021.8.12.1.tar.gz.

File metadata

  • Download URL: autofit-2021.8.12.1.tar.gz
  • Upload date:
  • Size: 9.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.5

File hashes

Hashes for autofit-2021.8.12.1.tar.gz
Algorithm Hash digest
SHA256 fd3aec745589090d563adfda445da7067a5c725a259d21aa34aa62aa95798dea
MD5 4344a995601160c3688c6355151d37d7
BLAKE2b-256 8d49419110d0fcfab0679176493c386229f96f8242e3e72daa54c8f66bd05273

See more details on using hashes here.

File details

Details for the file autofit-2021.8.12.1-py3-none-any.whl.

File metadata

  • Download URL: autofit-2021.8.12.1-py3-none-any.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.5

File hashes

Hashes for autofit-2021.8.12.1-py3-none-any.whl
Algorithm Hash digest
SHA256 38fe3eb47531c71cd56ea6f39d2bd3eaa9a292b2f458be5a04c2deac0e6f65a7
MD5 f5b59e4f2b98f61e07bbafdffee2e230
BLAKE2b-256 a0c847db4be933aa5b9db2e72ef73ed1c614ca46ddbeb420d6bf4411f9faf0f9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page