Skip to main content

Fast and Accurate ML in 3 Lines of Code

Project description

Fast and Accurate ML in 3 Lines of Code

Latest Release Conda Forge Python Versions Downloads GitHub license Discord Twitter Continuous Integration Platform Tests

Installation | Documentation | Release Notes

AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.

💾 Installation

AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.

You can install AutoGluon with:

pip install autogluon

Visit our Installation Guide for detailed instructions, including GPU support, Conda installs, and optional dependencies.

:zap: Quickstart

Build accurate end-to-end ML models in just 3 lines of code!

from autogluon.tabular import TabularPredictor
predictor = TabularPredictor(label="class").fit("train.csv", presets="best")
predictions = predictor.predict("test.csv")
AutoGluon Task Quickstart API
TabularPredictor Quick Start API
TimeSeriesPredictor Quick Start API
MultiModalPredictor Quick Start API

:mag: Resources

Hands-on Tutorials / Talks

Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available here.

Title Format Location Date
:tv: AutoGluon: Towards No-Code Automated Machine Learning Tutorial AutoML 2024 2024/09/09
:tv: AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code Tutorial AutoML 2023 2023/09/12
:sound: AutoGluon: The Story Podcast The AutoML Podcast 2023/09/05
:tv: AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data Tutorial PyData Berlin 2023/06/20
:tv: Solving Complex ML Problems in a few Lines of Code with AutoGluon Tutorial PyData Seattle 2023/06/20
:tv: The AutoML Revolution Tutorial Fall AutoML School 2022 2022/10/18

Scientific Publications

Articles

Train/Deploy AutoGluon in the Cloud

:pencil: Citing AutoGluon

If you use AutoGluon in a scientific publication, please refer to our citation guide.

:wave: How to get involved

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

:classical_building: License

This library is licensed under the Apache 2.0 License.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon_features-1.5.0.tar.gz (80.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

autogluon_features-1.5.0-py3-none-any.whl (98.9 kB view details)

Uploaded Python 3

File details

Details for the file autogluon_features-1.5.0.tar.gz.

File metadata

  • Download URL: autogluon_features-1.5.0.tar.gz
  • Upload date:
  • Size: 80.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.10.19

File hashes

Hashes for autogluon_features-1.5.0.tar.gz
Algorithm Hash digest
SHA256 56545cf9c21c9c5fdee3f5a09ba023893d6dca4f54fb0a2c4ac720b8abe19de6
MD5 72fc293859f546a137eb6a0f676ce1be
BLAKE2b-256 6abed18c6122231b4f284065b28522451772d714f5575fc994ce96e445829f25

See more details on using hashes here.

File details

Details for the file autogluon_features-1.5.0-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon_features-1.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5c8a7dd60c66b532b42122ff87a2d140adf7952632b6db24fe6255bb75f8d90e
MD5 76c5a4f6261b3363267d290367f457a0
BLAKE2b-256 f3c846eb69e371da89337419d3c754140f3ddae3c85a81b061ba3f275f442475

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page