Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240729.tar.gz (65.6 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240729-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240729.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240729.tar.gz
Algorithm Hash digest
SHA256 de6b18c9d5d3db77469aebdbbab21eba04cd96ecd3dbd5835997da450559fb0f
MD5 aaae60ab449f58249d37c07b5f9c3a3d
BLAKE2b-256 8fc9119dee5af7b844419d10237fbe5fe22b76af3cae1a5ae631bf2128165f70

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240729-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240729-py3-none-any.whl
Algorithm Hash digest
SHA256 481f18a0ca8869eb18f48d4e9577ae2675ad7f82ebd7d246750f33168ed21547
MD5 8f5eb4b7bed666d0f53493d753d23e52
BLAKE2b-256 0cb5221ec58e7ad5d19d5a719894c90bf0b950c7509bc1d846cc5245ffd41216

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page