A Python library for simulating automata and Turing machines
Project description
Automata is a Python 3 library which implements the structures and algorithms for finite automata, pushdown automata, and Turing machines.
Automata requires Python 3.4 or newer.
Migration to v2
If you are using Automata v1, please note that there are some significant changes in v2 to refine the API. If you wish to upgrade, please follow the migration guide.
Installing
You can install the latest version of Automata via pip:
pip install automata-lib
API
class Automaton(metaclass=ABCMeta)
The Automaton class is an abstract base class from which all automata (including Turing machines) inherit. As such, it cannot be instantiated on its own; you must use a defined subclasses instead (or you may create your own subclass if you’re feeling adventurous). The Automaton class can be found under automata/base/automaton.py.
If you wish to subclass Automaton, you can import it like so:
from automata.base.automaton import Automaton
The following methods are common to all Automaton subtypes:
Automaton.read_input(self, input_str)
Reads an input string into the automaton, returning the automaton’s final configuration (according to its subtype). If the input is rejected, the method raises a RejectionException.
Automaton.read_input_stepwise(self, input_str)
Reads an input string like read_input(), except instead of returning the final configuration, the method returns a generator. The values yielded by this generator depend on the automaton’s subtype.
If the string is rejected by the automaton, the method still raises a RejectionException.
Automaton.accepts_input(self, input_str)
Reads an input string like read_input(), except it returns a boolean instead of returning the automaton’s final configuration (or raising an exception). That is, the method always returns True if the input is accepted, and it always returns False if the input is rejected.
Automaton.validate(self)
Checks whether the automaton is actually a valid automaton (according to its subtype). It returns True if the automaton is valid; otherwise, it will raise the appropriate exception (e.g. the state transition is missing for a particular symbol).
This method is automatically called when the automaton is initialized, so it’s only really useful if a automaton object is modified after instantiation.
Automaton.copy(self)
Returns a deep copy of the automaton according to its subtype.
class FA(Automaton, metaclass=ABCMeta)
The FA class is an abstract base class from which all finite automata inherit. The FA class can be found under automata/fa/fa.py.
If you wish to subclass FA, you can import it like so:
from automata.fa.fa import FA
class DFA(FA)
The DFA class is a subclass of FA and represents a deterministic finite automaton. It can be found under automata/fa/dfa.py.
Every DFA has the following (required) properties:
states: a set of the DFA’s valid states, each of which must be represented as a string
input_symbols: a set of the DFA’s valid input symbols, each of which must also be represented as a string
transitions: a dict consisting of the transitions for each state. Each key is a state name and each value is a dict which maps a symbol (the key) to a state (the value).
initial_state: the name of the initial state for this DFA
final_states: a set of final states for this DFA
from automata.fa.dfa import DFA
# DFA which matches all binary strings ending in an odd number of '1's
dfa = DFA(
states={'q0', 'q1', 'q2'},
input_symbols={'0', '1'},
transitions={
'q0': {'0': 'q0', '1': 'q1'},
'q1': {'0': 'q0', '1': 'q2'},
'q2': {'0': 'q2', '1': 'q1'}
},
initial_state='q0',
final_states={'q1'}
)
DFA.read_input(self, input_str)
Returns the final state the DFA stopped on, if the input is accepted.
dfa.read_input('01') # returns 'q1'
dfa.read_input('011') # raises RejectionException
DFA.read_input_stepwise(self, input_str)
Yields each state reached as the DFA reads characters from the input string, if the input is accepted.
dfa.read_input_stepwise('0111')
# yields:
# 'q0'
# 'q0'
# 'q1'
# 'q2'
# 'q1'
DFA.accepts_input(self, input_str)
if dfa.accepts_input(my_input_str):
print('accepted')
else:
print('rejected')
DFA.validate(self)
dfa.validate() # returns True
DFA.copy(self)
dfa.copy() # returns deep copy of dfa
DFA.minify(self)
Creates a minimal DFA which accepts the same inputs as the old one. Unreachable states are removed and equivalent states are merged.
minimal_dfa = dfa.minify()
DFA.from_nfa(cls, nfa)
Creates a DFA that is equivalent to the given NFA.
from automata.fa.dfa import DFA
from automata.fa.nfa import NFA
dfa = DFA.from_nfa(nfa) # returns an equivalent DFA
class NFA(FA)
The NFA class is a subclass of FA and represents a nondeterministic finite automaton. It can be found under automata/fa/nfa.py.
Every NFA has the same five DFA properties: state, input_symbols, transitions, initial_state, and final_states. However, the structure of the transitions object has been modified slightly to accommodate the fact that a single state can have more than one transition for the same symbol. Therefore, instead of mapping a symbol to one end state in each sub-dict, each symbol is mapped to a set of end states.
from automata.fa.nfa import NFA
# NFA which matches strings beginning with 'a', ending with 'a', and containing
# no consecutive 'b's
nfa = NFA(
states={'q0', 'q1', 'q2'},
input_symbols={'a', 'b'},
transitions={
'q0': {'a': {'q1'}},
# Use '' as the key name for empty string (lambda/epsilon) transitions
'q1': {'a': {'q1'}, '': {'q2'}},
'q2': {'b': {'q0'}}
},
initial_state='q0',
final_states={'q1'}
)
NFA.read_input(self, input_str)
Returns a set of final states the FA stopped on, if the input is accepted.
nfa.read_input('aba') # returns {'q1', 'q2'}
nfa.read_input('abba') # raises RejectionException
NFA.read_input_stepwise(self, input_str)
Yields each set of states reached as the NFA reads characters from the input string, if the input is accepted.
nfa.read_input_stepwise('aba')
# yields:
# {'q0'}
# {'q1', 'q2'}
# {'q0'}
# {'q1', 'q2'}
NFA.accepts_input(self, input_str)
if nfa.accepts_input(my_input_str):
print('accepted')
else:
print('rejected')
NFA.validate(self)
nfa.validate() # returns True
NFA.copy(self)
nfa.copy() # returns deep copy of nfa
NFA.from_dfa(cls, dfa)
Creates an NFA that is equivalent to the given DFA.
from automata.fa.nfa import NFA
from automata.fa.dfa import DFA
nfa = NFA.from_dfa(dfa) # returns an equivalent NFA
class PDA(Automaton, metaclass=ABCMeta)
The PDA class is an abstract base class from which all pushdown automata inherit. It can be found under automata/pda/pda.py.
class DPDA(PDA)
The DPDA class is a subclass of PDA and represents a deterministic finite automaton. It can be found under automata/pda/dpda.py.
Every DPDA has the following (required) properties:
states: a set of the DPDA’s valid states, each of which must be represented as a string
input_symbols: a set of the DPDA’s valid input symbols, each of which must also be represented as a string
stack_symbols: a set of the DPDA’s valid stack symbols
transitions: a dict consisting of the transitions for each state; see the example below for the exact syntax
initial_state: the name of the initial state for this DPDA
initial_stack_symbol: the name of the initial symbol on the stack for this DPDA
final_states: a set of final states for this DPDA
from automata.pda.dpda import DPDA
# DPDA which which matches zero or more 'a's, followed by the same
# number of 'b's (accepting by final state)
dpda = DPDA(
states={'q0', 'q1', 'q2', 'q3'},
input_symbols={'a', 'b'},
stack_symbols={'0', '1'},
transitions={
'q0': {
'a': {'0': ('q1', ('1', '0'))} # transition pushes '1' to stack
},
'q1': {
'a': {'1': ('q1', ('1', '1'))},
'b': {'1': ('q2', '')} # transition pops from stack
},
'q2': {
'b': {'1': ('q2', '')},
'': {'0': ('q3', ('0',))} # transition does not change stack
}
},
initial_state='q0',
initial_stack_symbol='0',
final_states={'q3'}
)
DPDA.read_input(self, input_str)
Returns a PDAConfiguration object representing the DPDA’s config. This is basically a tuple containing the final state the DPDA stopped on, the remaining input (an empty string) as well as a PDAStack object representing the DPDA’s stack (if the input is accepted).
dpda.read_input('ab') # returns PDAConfiguration('q3', '', PDAStack(('0')))
dpda.read_input('aab') # raises RejectionException
DPDA.read_input_stepwise(self, input_str)
Yields PDAConfiguration objects. These are basically tuples containing the current state, the remaining input and the current stack as a PDAStack object, if the input is accepted.
dpda.read_input_stepwise('ab')
# yields:
# PDAConfiguration('q0', 'ab', PDAStack(('0')))
# PDAConfiguration('q1', 'a', PDAStack(('0', '1')))
# PDAConfiguration('q3', '', PDAStack(('0')))
DPDA.accepts_input(self, input_str)
if dpda.accepts_input(my_input_str):
print('accepted')
else:
print('rejected')
DPDA.validate(self)
dpda.validate() # returns True
DPDA.copy(self)
dpda.copy() # returns deep copy of dpda
class NPDA(PDA)
The NPDA class is a subclass of PDA and represents a nondeterministic pushdown automaton. It can be found under automata/pda/npda.py.
Every NPDA has the following (required) properties:
states: a set of the NPDA’s valid states, each of which must be represented as a string
input_symbols: a set of the NPDA’s valid input symbols, each of which must also be represented as a string
stack_symbols: a set of the NPDA’s valid stack symbols
transitions: a dict consisting of the transitions for each state; see the example below for the exact syntax
initial_state: the name of the initial state for this NPDA
initial_stack_symbol: the name of the initial symbol on the stack for this NPDA
final_states: a set of final states for this NPDA
from automata.pda.npda import NPDA
# NPDA which matches palindromes consisting of 'a's and 'b's
# (accepting by final state)
# q0 reads the first half of the word, q1 the other half, q2 accepts.
# But we have to guess when to switch.
npda = NPDA(
states={'q0', 'q1', 'q2'},
input_symbols={'a', 'b'},
stack_symbols={'A', 'B', '#'},
transitions={
'q0': {
'': {
'#': {('q2', '#')},
},
'a': {
'#': {('q0', ('A', '#'))},
'A': {
('q0', ('A', 'A')),
('q1', ''),
},
'B': {('q0', ('A', 'B'))},
},
'b': {
'#': {('q0', ('B', '#'))},
'A': {('q0', ('B', 'A'))},
'B': {
('q0', ('B', 'B')),
('q1', ''),
},
},
},
'q1': {
'': {'#': {('q2', '#')}},
'a': {'A': {('q1', '')}},
'b': {'B': {('q1', '')}},
},
},
initial_state='q0',
initial_stack_symbol='#',
final_states={'q2'}
)
NPDA.read_input(self, input_str)
Returns a set of PDAConfigurations representing all of the NPDA’s configurations. Each of these is basically a tuple containing the final state the NPDA stopped on, the remaining input (an empty string) as well as a PDAStack object representing the NPDA’s stack (if the input is accepted).
npda.read_input("aaaa") # returns {PDAConfiguration('q2', '', PDAStack('#',))}
npda.read_input('ab') # raises RejectionException
NPDA.read_input_stepwise(self, input_str)
Yields sets of PDAConfiguration object. Each of these is basically a tuple containing the current state, the remaining input and the current stack as a PDAStack object, if the input is accepted.
npda.read_input_stepwise('aa')
# yields:
# {PDAConfiguration('q0', 'aa', PDAStack('#',))}
# {PDAConfiguration('q0', 'a', PDAStack('#', 'A')), PDAConfiguration('q2', 'aa', PDAStack('#',))}
# {PDAConfiguration('q0', '', PDAStack('#', 'A', 'A')), PDAConfiguration('q1', '', PDAStack('#',))}
# {PDAConfiguration('q2', '', PDAStack('#',))}
NPDA.accepts_input(self, input_str)
if npda.accepts_input(my_input_str):
print('accepted')
else:
print('rejected')
NPDA.validate(self)
npda.validate() # returns True
NPDA.copy(self)
npda.copy() # returns deep copy of npda
class TM(Automaton, metaclass=ABCMeta)
The TM class is an abstract base class from which all Turing machines inherit. It can be found under automata/tm/tm.py.
class DTM(TM)
The DTM class is a subclass of TM and represents a deterministic Turing machine. It can be found under automata/tm/dtm.py.
Every DTM has the following (required) properties:
states: a set of the DTM’s valid states, each of which must be represented as a string
input_symbols: a set of the DTM’s valid input symbols represented as strings
tape_symbols: a set of the DTM’s valid tape symbols represented as strings
transitions: a dict consisting of the transitions for each state; each key is a state name and each value is a dict which maps a symbol (the key) to a state (the value)
initial_state: the name of the initial state for this DTM
blank_symbol: a symbol from tape_symbols to be used as the blank symbol for this DTM
final_states: a set of final states for this DTM
from automata.tm.dtm import DTM
# DTM which matches all strings beginning with '0's, and followed by
# the same number of '1's
dtm = DTM(
states={'q0', 'q1', 'q2', 'q3', 'q4'},
input_symbols={'0', '1'},
tape_symbols={'0', '1', 'x', 'y', '.'},
transitions={
'q0': {
'0': ('q1', 'x', 'R'),
'y': ('q3', 'y', 'R')
},
'q1': {
'0': ('q1', '0', 'R'),
'1': ('q2', 'y', 'L'),
'y': ('q1', 'y', 'R')
},
'q2': {
'0': ('q2', '0', 'L'),
'x': ('q0', 'x', 'R'),
'y': ('q2', 'y', 'L')
},
'q3': {
'y': ('q3', 'y', 'R'),
'.': ('q4', '.', 'R')
}
},
initial_state='q0',
blank_symbol='.',
final_states={'q4'}
)
The direction N (for no movement) is also supported.
DTM.read_input(self, input_str)
Returns a TMConfiguration. This is basically a tuple containing the final state the machine stopped on, as well as a TMTape object representing the DTM’s internal tape (if the input is accepted).
dtm.read_input('01') # returns TMConfiguration('q4', TMTape('xy..', 3))
Calling config.print() will produce a more readable output:
dtm.read_input('01').print()
# q4: xy..
# ^
dtm.read_input('011') # raises RejectionException
DTM.read_input_stepwise(self, input_str)
Yields TMConfigurations. Those are basically tuples containing the current state and the current tape as a TMTape object.
dtm.read_input_stepwise('01')
# yields:
# TMConfiguration('q0', TMTape('01', 0))
# TMConfiguration('q1', TMTape('x1', 1))
# TMConfiguration('q2', TMTape('xy', 0))
# TMConfiguration('q0', TMTape('xy', 1))
# TMConfiguration('q3', TMTape('xy.', 2))
# TMConfiguration('q4', TMTape('xy..', 3))
DTM.accepts_input(self, input_str)
if dtm.accepts_input(my_input_str):
print('accepted')
else:
print('rejected')
DTM.validate(self)
dtm.validate() # returns True
DTM.copy(self)
dtm.copy() # returns deep copy of dtm
class NTM(TM)
The NTM class is a subclass of TM and represents a nondeterministic Turing machine. It can be found under automata/tm/ntm.py.
Every NTM has the following (required) properties:
states: a set of the NTM’s valid states, each of which must be represented as a string
input_symbols: a set of the NTM’s valid input symbols represented as strings
tape_symbols: a set of the NTM’s valid tape symbols represented as strings
transitions: a dict consisting of the transitions for each state; each key is a state name and each value is a dict which maps a symbol (the key) to a set of states (the values)
initial_state: the name of the initial state for this NTM
blank_symbol: a symbol from tape_symbols to be used as the blank symbol for this NTM
final_states: a set of final states for this NTM
from automata.tm.ntm import NTM
# NTM which matches all strings beginning with '0's, and followed by
# the same number of '1's
# Note that the nondeterminism is not really used here.
ntm = NTM(
states={'q0', 'q1', 'q2', 'q3', 'q4'},
input_symbols={'0', '1'},
tape_symbols={'0', '1', 'x', 'y', '.'},
transitions={
'q0': {
'0': {('q1', 'x', 'R')},
'y': {('q3', 'y', 'R')},
},
'q1': {
'0': {('q1', '0', 'R')},
'1': {('q2', 'y', 'L')},
'y': {('q1', 'y', 'R')},
},
'q2': {
'0': {('q2', '0', 'L')},
'x': {('q0', 'x', 'R')},
'y': {('q2', 'y', 'L')},
},
'q3': {
'y': {('q3', 'y', 'R')},
'.': {('q4', '.', 'R')},
}
},
initial_state='q0',
blank_symbol='.',
final_states={'q4'}
)
The direction N (for no movement) is also supported.
NTM.read_input(self, input_str)
Returns a set of TMConfigurations. These are basically tuples containing the final state the machine stopped on, as well as a TMTape object representing the DTM’s internal tape (if the input is accepted).
ntm.read_input('01') # returns {TMConfiguration('q4', TMTape('xy..', 3))}
Calling config.print() will produce a more readable output:
ntm.read_input('01').pop().print()
# q4: xy..
# ^
ntm.read_input('011') # raises RejectionException
NTM.read_input_stepwise(self, input_str)
Yields sets of TMConfigurations. Those are basically tuples containing the current state and the current tape as a TMTape object.
ntm.read_input_stepwise('01')
# yields:
# {TMConfiguration('q0', TMTape('01', 0))}
# {TMConfiguration('q1', TMTape('x1', 1))}
# {TMConfiguration('q2', TMTape('xy', 0))}
# {TMConfiguration('q0', TMTape('xy', 1))}
# {TMConfiguration('q3', TMTape('xy.', 2))}
# {TMConfiguration('q4', TMTape('xy..', 3))}
NTM.accepts_input(self, input_str)
if ntm.accepts_input(my_input_str):
print('accepted')
else:
print('rejected')
NTM.validate(self)
ntm.validate() # returns True
NTM.copy(self)
ntm.copy() # returns deep copy of ntm
Base exception classes
The library also includes a number of exception classes to ensure that errors never pass silently (unless explicitly silenced). See automata/base/exceptions.py for these class definitions.
To reference these exceptions (so as to catch them in a try..except block or whatnot), simply import automata.base.exceptions however you’d like:
import automata.base.exceptions as exceptions
class AutomatonException
A base class from which all other automata exceptions inherit (including finite automata and Turing machines).
class InvalidStateError
Raised if a state is not a valid state for this automaton.
class InvalidSymbolError
Raised if a symbol is not a valid symbol for this automaton.
class MissingStateError
Raised if a state is missing from the automaton definition.
class MissingSymbolError
Raised if a symbol is missing from the automaton definition.
class InitialStateError
Raised if the initial state fails to meet some required condition for this type of automaton.
class FinalStateError
Raised if a final state fails to meet some required condition for this type of automaton.
class RejectionException
Raised if the automaton stopped on a non-final state after validating input.
Turing machine exception classes
The automata.tm package also includes a module for exceptions specific to Turing machines. You can reference these exception classes like so:
import automata.tm.exceptions as tm_exceptions
class TMException
A base class from which all other Turing machine exceptions inherit.
class InvalidDirectionError
Raised if a direction specified in this machine’s transition map is not a valid direction.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.