Skip to main content

A package for automating machine learning tasks

Project description

Autopilotml

Automated machine learning library for analytics

Installation

  • pip install autopilotml

Usage

Load data

from autopilotml import load_data, load_database

# For csv files
df = load_data(path = "dataset/titanic_train.csv", csv=True, **kwargs)

# For excel notebook
df = load_data(path = "dataset/titanic_train.xlsx", excel=True, **kwargs)

# To Load data from Database

# This framework supports sqlite, 'mysql', 'postgres', 'MongoDB'
df = load_database(database_type='sqlite', sqlite_db_path = 'database.db', query='select * from employee_table')

Data Preprocessing

from autopilotml import preprocessing

# If changing any values in the dictionary, whole dictionary has to be provided.

df = preprocessing(dataframe=df, label_column='Survived',
                                missing={
                                    'type':'impute',
                                    'drop_columns': False, 
                                    'threshold': 0.25, 
                                    'strategy_numerical': 'knn',
                                    'strategy_categorical': 'most_frequent',
                                    'fill_value': None},
                                outlier={
                                    'method': 'None',
                                    'zscore_threshold': 3,
                                    'iqr_threshold': 1.5,
                                    'Lc': 0.05, 
                                    'Uc': 0.95,
                                    'cap': False})

Data Transformation

from autopilotml import transformation

# If the target_transform is true, then the function  return 3 objects, (e.g) dataframe, feature encoder and target encoder
# else it will return 2 objects dataframe and feature encoder
df, encoder = transformation(dataframe=df,
                                label_column='Survived', 
                                type = 'ordinal',
                                target_transform = False, 
                                cardinality = True, 
                                Cardinality_threshold = 0.3)

Scaling

# Here if target_scaling = True only applicable for regression then it will return 3 objects dataframe, feature scaler and target scaler

from autopilotml import scaling

df, scaler = scaling(df, label_column= 'Survived', type = 'standard', target_scaling = False)

Feature Selecction

from autopilotml import feature_selection

df, selector = feature_selection(dataframe=df, label_column='Survived', 
                                estimator='RandomForestClassifier',           
                                type='rfe', max_features=10, 
                                min_features=2, scoring= 'accuracy', 
                                cv=5)

Model Training

from autopilotml import training

model = training(dataframe=df, label_column='Survived', model_name='SVC', problem_type='Classification', 
                target_scaler=None, test_split =0.15, hypertune=True, n_epochs=100)

MLFlow - Track the Model Training and model Parameters

!mlflow ui

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autopilotml-1.0.14.tar.gz (202.9 kB view details)

Uploaded Source

Built Distribution

autopilotml-1.0.14-py3-none-any.whl (208.2 kB view details)

Uploaded Python 3

File details

Details for the file autopilotml-1.0.14.tar.gz.

File metadata

  • Download URL: autopilotml-1.0.14.tar.gz
  • Upload date:
  • Size: 202.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for autopilotml-1.0.14.tar.gz
Algorithm Hash digest
SHA256 a4ec1d70b5f7473556b589b0ee81141010c9f70de4de4bad1de023bd1e8d125c
MD5 ddb1ad77591ebd087bf073ec32f2a98c
BLAKE2b-256 901fe8235132eadca59508078830bc4d07a774fae988047796fdc75446030a7e

See more details on using hashes here.

File details

Details for the file autopilotml-1.0.14-py3-none-any.whl.

File metadata

  • Download URL: autopilotml-1.0.14-py3-none-any.whl
  • Upload date:
  • Size: 208.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for autopilotml-1.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 68dd199f1c658fbc0d76728d66b15ab9a820a2a71bfd654762aabdf5930a0f30
MD5 d5954e8b79b1b3da9aa7d1444cb36e6c
BLAKE2b-256 f9461a039a56c60672c6fd84339804c3c06102d902ef563cd597e15675d45bd7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page