Skip to main content

Write backend agnostic numeric code compatible with any numpy-ish array library.

Project description

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for:

Travis-CI Code Coverage Code Quality

As an example consider this function that orthogonalizes a matrix using the modified Gram-Schmidt algorithm:

from autoray import do

def modified_gram_schmidt(X):

    Q = []
    for j in range(0, X.shape[0]):

        q = X[j, :]
        for i in range(0, j):
            rij = do('tensordot', do('conj', Q[i]), q, 1)
            q = q - rij * Q[i]

        rjj = do('linalg.norm', q, 2)
        Q.append(q / rjj)

    return do('stack', Q, axis=0, like=X)

Which is now compatible with all of the above mentioned libraries! (N.B. this particular example is also probably slow). If you don’t like the explicit do syntax, then you can import the fake numpy object as a drop-in replacement instead:

from autoray import numpy as np

x = np.random.uniform(size=(2, 3, 4), like='tensorflow')
np.tensordot(x, x, [(2, 1), (2, 1)])
# <tf.Tensor 'Tensordot:0' shape=(2, 2) dtype=float32>

np.eye(3, like=x)  # many functions obviously can't dispatch without the `like` keyword
# <tf.Tensor 'eye/MatrixDiag:0' shape=(3, 3) dtype=float32>

Of course complete compatibility is not going to be possible for all functions, operations and libraries, but autoray hopefully makes the job much easier. Of the above, tensorflow has quite a different interface and pytorch probably the most different. Whilst for example not every function will work out-of-the-box for these two, autoray is also designed with the easy addition of new functions in mind (for example adding new translations is often a one-liner).

How does it work?

autoray works using essentially a single dispatch mechanism on the first argument for do, or the like keyword argument if specified, fetching functions from the whichever module defined that supplied array. Additionally, it caches a few custom translations and lookups so as to handle libraries like tensorflow that don’t exactly replicate the numpy api (for example sum gets translated to tensorflow.reduce_sum).

Special Functions

The main function is do, but the following special (i.e. not in numpy) functions are also implemented that may be useful:

  • autoray.infer_backend - check what library is being inferred for a given array

  • autoray.to_backend_dtype - convert a string specified dtype like 'float32' to torch.float32 for example

  • autoray.get_dtype_name - convert a backend dtype back into the equivalent string specifier like 'complex64'

  • autoray.astype - backend agnostic dtype conversion of arrays

  • autoray.to_numpy - convert any array to a numpy.ndarray

Here are all of those in action:

import autoray as ar

backend = 'torch'
dtype = ar.to_backend_dtype('float64', like=backend)
dtype
# torch.float64

x = ar.do('random.normal', size=(4,), dtype=dtype, like=backend)
x
# tensor([ 0.0461,  0.3028,  0.1790, -0.1494], dtype=torch.float64)

ar.infer_backend(x)
# 'torch'

ar.get_dtype_name(x)
# 'float64'

x32 = ar.astype(x, 'float32')
ar.to_numpy(x32)
# array([ 0.04605161,  0.30280888,  0.17903718, -0.14936243], dtype=float32)

Deviations from numpy

autoray doesn’t have an API as such, since it is essentially just a fancy single dispatch mechanism. On the other hand, where translations are in place, they generally use the numpy API. So autoray.do('stack', arrays=pytorch_tensors, axis=0) gets automatically translated into torch.stack(tensors=pytorch_tensors, dims=0) and so forth.

Currently the one place this isn’t true is autoray.do('linalg.svd', x) where instead full_matrices=False is used as the default since this generally makes more sense and many libraries don’t even implement the other case. Autoray also dispatches 'linalg.expm' for numpy arrays to scipy, and may well do with other scipy-only functions at some point.

Installation

You can install autoray as standard with pip. Alternatively, simply copy the monolithic autoray.py into your project internally (if dependencies aren’t your thing).

Alternatives

  • The __array_function__ protocol has been suggested and now implemented in numpy. Hopefully this will eventually negate the need for autoray. On the other hand, third party libraries themselves need to implement the interface, which has not been done, for example, in tensorflow yet.

  • The uarray project aims to develop a generic array interface but comes with the warning “This is experimental and very early research code. Don’t use this.”.

Contributing

Pull requests such as extra translations are very welcome!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autoray-0.2.1.tar.gz (30.6 kB view details)

Uploaded Source

Built Distribution

autoray-0.2.1-py3-none-any.whl (14.2 kB view details)

Uploaded Python 3

File details

Details for the file autoray-0.2.1.tar.gz.

File metadata

  • Download URL: autoray-0.2.1.tar.gz
  • Upload date:
  • Size: 30.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for autoray-0.2.1.tar.gz
Algorithm Hash digest
SHA256 dc60095fbcc464e1d72ae7c4447438cff947e0cdb14626045b70abea8b58fe9e
MD5 92f73f092cf632db5d797699d41296e6
BLAKE2b-256 dd91d66c5426595f6d20429fa1e1871402cc9638376b244009f4ff09ab465c90

See more details on using hashes here.

File details

Details for the file autoray-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: autoray-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 14.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for autoray-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b9ceaa6e3ebf50e357b62cdb6b899657c28e721019757f63e6b83790489e0a10
MD5 7e6234d83464fac48ea77de01730c1d0
BLAKE2b-256 d7129bed8f8fca758dfcb36921120613459053d9e099b6aedad3cc0f2b5401de

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page