Skip to main content

No project description provided

Project description

AutoRes Evaluator

※ 追加で実装して欲しい機能や質問などがあれば以下のissuesから投稿をお願いします

https://github.com/auto-res/autores-evaluator/issues/new

Examples

  • Prediction by logistic regression on the Titanic dataset Open In Colab

  • Prediction by CNN on CIFAR10 Open In Colab

Architecture

ロゴ1

How to use

pip install autoresevaluator

from autoresevaluator import AutoResEvaluator
  • Setting
# Hyperparameter setting
# Specify "type" and "args" for items to be searched in optuna.
params = {
    'lambda_l1': {'type': 'log_float', 'args': [1e-8, 10.0]},
    'lambda_l2': {'type': 'log_float', 'args': [1e-8, 10.0]},
    'num_leaves': {'type': 'int', 'args': [2, 256]},
    'feature_fraction': {'type': 'float', 'args': [0.4, 1.0]},
    'bagging_fraction': {'type': 'float', 'args': [0.4, 1.0]},
    'verbosity': -1
}

are = AutoResEvaluator(
    # dataset name
    dataset_name='titanic',
    # model file path
    model_path='/content/example.py',
    # parameter
    params=params,
    # Metrics you want to maximize/minimize
    valuation_index='roc_auc',
    # Where to store data
    datasave_path=None
    )
  • Execution
are.exec()

Output

  • result.log

    • File to output the results
  • model_error.log

    • File to write errors in model files

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autoresevaluator-0.1.10.tar.gz (9.5 kB view details)

Uploaded Source

Built Distribution

autoresevaluator-0.1.10-py3-none-any.whl (13.5 kB view details)

Uploaded Python 3

File details

Details for the file autoresevaluator-0.1.10.tar.gz.

File metadata

  • Download URL: autoresevaluator-0.1.10.tar.gz
  • Upload date:
  • Size: 9.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.9.18 Darwin/23.2.0

File hashes

Hashes for autoresevaluator-0.1.10.tar.gz
Algorithm Hash digest
SHA256 819223879db00d7ba57f2e5fbb5b38f4d6aa907396b7f9382ce04f275a6c0404
MD5 a728348749210f8bbb604fc91ea9dc0c
BLAKE2b-256 5c05e25ecfb1a360310333da0d18302f00431c21043e6e0ae65b095345a0f830

See more details on using hashes here.

File details

Details for the file autoresevaluator-0.1.10-py3-none-any.whl.

File metadata

File hashes

Hashes for autoresevaluator-0.1.10-py3-none-any.whl
Algorithm Hash digest
SHA256 6a1ff4322f1f69a1083063c180993af1fdc720fb8d8434efa6644bcc88afdd35
MD5 ac644e84dff4b4d187f1a7e26dcc0b29
BLAKE2b-256 690358269cd4956bc58466ba58f20cf99962a77babbd5d86eb827cf3b0f8166b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page