Skip to main content

No project description provided

Project description

AutoRes Evaluator

How to use

pip install autoresevaluator

from autoresevaluator import AutoResEvaluator
  • Setting
# Hyperparameter setting
# Specify "type" and "args" for items to be searched in optuna.
params = {
    'lambda_l1': {'type': 'log_float', 'args': [1e-8, 10.0]},
    'lambda_l2': {'type': 'log_float', 'args': [1e-8, 10.0]},
    'num_leaves': {'type': 'int', 'args': [2, 256]},
    'feature_fraction': {'type': 'float', 'args': [0.4, 1.0]},
    'bagging_fraction': {'type': 'float', 'args': [0.4, 1.0]},
    'verbosity': -1
}


are = AutoResEvaluator(
    # task type
    task_type='tabledata binary classification',
    # dataset name
    dataset_name='titanic',
    # model file path
    model_path='/Users/tanakatouma/vscode/autores-evaluator/test/lightgbm_model.py',
    params=params,
    # Metrics you want to maximize/minimize
    valuation_index='pr_auc'
    )
  • Execution
are.exec()

Output

  • result.log

    • File to output the results
  • model_error.log

    • File to write errors in model files

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autoresevaluator-0.1.4.tar.gz (7.1 kB view details)

Uploaded Source

Built Distribution

autoresevaluator-0.1.4-py3-none-any.whl (10.0 kB view details)

Uploaded Python 3

File details

Details for the file autoresevaluator-0.1.4.tar.gz.

File metadata

  • Download URL: autoresevaluator-0.1.4.tar.gz
  • Upload date:
  • Size: 7.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.9.18 Darwin/23.2.0

File hashes

Hashes for autoresevaluator-0.1.4.tar.gz
Algorithm Hash digest
SHA256 13a0801faee61211f6e8835d85cb9bf26a0fac98eee8a6117ae382a078e7c5ca
MD5 e5ed203b1747294efc852361ceb49305
BLAKE2b-256 64e109c307410b70a3ca7d145d944dc31005a51c8c8fd5d9b7c5c24b60d25fb4

See more details on using hashes here.

File details

Details for the file autoresevaluator-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for autoresevaluator-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 4df8e80e5301ac773fffac9f743979cdaabe0983da6de38274efcc538ecbb5fd
MD5 f791b0bacb8075725ea95689b8af6a41
BLAKE2b-256 6402a9931b2aa5f3005d66e945aeb847bb1f545c971552760d3cc27971eebea9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page