Skip to main content

No project description provided

Project description

AutoRes Evaluator

How to use

pip install autoresevaluator

from autoresevaluator import AutoResEvaluator
  • Setting
# Hyperparameter setting
# Specify "type" and "args" for items to be searched in optuna.
params = {
    'lambda_l1': {'type': 'log_float', 'args': [1e-8, 10.0]},
    'lambda_l2': {'type': 'log_float', 'args': [1e-8, 10.0]},
    'num_leaves': {'type': 'int', 'args': [2, 256]},
    'feature_fraction': {'type': 'float', 'args': [0.4, 1.0]},
    'bagging_fraction': {'type': 'float', 'args': [0.4, 1.0]},
    'verbosity': -1
}


are = AutoResEvaluator(
    # task type
    task_type='tabledata binary classification',
    # dataset name
    dataset_name='titanic',
    # model file path
    model_path='/Users/tanakatouma/vscode/autores-evaluator/test/lightgbm_model.py',
    params=params,
    # Metrics you want to maximize/minimize
    valuation_index='pr_auc'
    )
  • Execution
are.exec()

Output

  • result.log

    • File to output the results
  • model_error.log

    • File to write errors in model files

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autoresevaluator-0.1.5.tar.gz (7.1 kB view details)

Uploaded Source

Built Distribution

autoresevaluator-0.1.5-py3-none-any.whl (10.0 kB view details)

Uploaded Python 3

File details

Details for the file autoresevaluator-0.1.5.tar.gz.

File metadata

  • Download URL: autoresevaluator-0.1.5.tar.gz
  • Upload date:
  • Size: 7.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.9.18 Darwin/23.2.0

File hashes

Hashes for autoresevaluator-0.1.5.tar.gz
Algorithm Hash digest
SHA256 42b92eac3f44f5200f10570dd4cdb3d83cbd7810d422adc021365d317b602af3
MD5 f16c1aa1a8b8eaddf7a99971d12b4a23
BLAKE2b-256 fe456302278cb0ac43d5a611d695243b33cf93a86bfd7c9894000c58badb6940

See more details on using hashes here.

File details

Details for the file autoresevaluator-0.1.5-py3-none-any.whl.

File metadata

File hashes

Hashes for autoresevaluator-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 b166fe7d2023b81b91d5a7c3f045e68d0dc40aa3201e474eb68e987d8f49adcd
MD5 dae48f94826a6589e95b38e16ef7dba9
BLAKE2b-256 56b323fefd4a15d49b1906163524daf60e2efebab23a117a1e8c36a31e3b8aab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page