Skip to main content

No project description provided

Project description

AutoRes Evaluator

Open In Colab

Architecture

ロゴ1

How to use

pip install autoresevaluator

from autoresevaluator import AutoResEvaluator
  • Setting
# Hyperparameter setting
# Specify "type" and "args" for items to be searched in optuna.
params = {
    'lambda_l1': {'type': 'log_float', 'args': [1e-8, 10.0]},
    'lambda_l2': {'type': 'log_float', 'args': [1e-8, 10.0]},
    'num_leaves': {'type': 'int', 'args': [2, 256]},
    'feature_fraction': {'type': 'float', 'args': [0.4, 1.0]},
    'bagging_fraction': {'type': 'float', 'args': [0.4, 1.0]},
    'verbosity': -1
}


are = AutoResEvaluator(
    # task type
    task_type='tabledata binary classification',
    # dataset name
    dataset_name='titanic',
    # model file path
    model_path='/Users/tanakatouma/vscode/autores-evaluator/test/lightgbm_model.py',
    params=params,
    # Metrics you want to maximize/minimize
    valuation_index='pr_auc'
    )
  • Execution
are.exec()

Output

  • result.log

    • File to output the results
  • model_error.log

    • File to write errors in model files

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autoresevaluator-0.1.6.tar.gz (7.5 kB view details)

Uploaded Source

Built Distribution

autoresevaluator-0.1.6-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file autoresevaluator-0.1.6.tar.gz.

File metadata

  • Download URL: autoresevaluator-0.1.6.tar.gz
  • Upload date:
  • Size: 7.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.9.18 Darwin/23.2.0

File hashes

Hashes for autoresevaluator-0.1.6.tar.gz
Algorithm Hash digest
SHA256 d36ada3ec085e9674b8a8d38fa4a037809eca032e8e367abbeca71a3ba66eea5
MD5 972937c5e28aa5010f71ef11b7c4523c
BLAKE2b-256 ec949488a365d0ff999147c04e2f03ad50d9e9aac529457d716084b7863c2a88

See more details on using hashes here.

File details

Details for the file autoresevaluator-0.1.6-py3-none-any.whl.

File metadata

File hashes

Hashes for autoresevaluator-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 cc1a8cedd476ad3923b257278a248bdeb83c7df8b77b19af7d9ee100043556d4
MD5 7c7bb87e05533b387d6faddbe270690f
BLAKE2b-256 fe6c27d9be5c884e8fc0df716eb390c222a3421aec06c6eac0d53a54e51d253c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page