Skip to main content

No project description provided

Project description

AutoRes Evaluator

Open In Colab

Architecture

ロゴ1

How to use

pip install autoresevaluator

from autoresevaluator import AutoResEvaluator
  • Setting
# Hyperparameter setting
# Specify "type" and "args" for items to be searched in optuna.
params = {
    'lambda_l1': {'type': 'log_float', 'args': [1e-8, 10.0]},
    'lambda_l2': {'type': 'log_float', 'args': [1e-8, 10.0]},
    'num_leaves': {'type': 'int', 'args': [2, 256]},
    'feature_fraction': {'type': 'float', 'args': [0.4, 1.0]},
    'bagging_fraction': {'type': 'float', 'args': [0.4, 1.0]},
    'verbosity': -1
}


are = AutoResEvaluator(
    # task type
    task_type='tabledata binary classification',
    # dataset name
    dataset_name='titanic',
    # model file path
    model_path='/Users/tanakatouma/vscode/autores-evaluator/test/lightgbm_model.py',
    params=params,
    # Metrics you want to maximize/minimize
    valuation_index='pr_auc'
    )
  • Execution
are.exec()

Output

  • result.log

    • File to output the results
  • model_error.log

    • File to write errors in model files

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autoresevaluator-0.1.7.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

autoresevaluator-0.1.7-py3-none-any.whl (12.3 kB view details)

Uploaded Python 3

File details

Details for the file autoresevaluator-0.1.7.tar.gz.

File metadata

  • Download URL: autoresevaluator-0.1.7.tar.gz
  • Upload date:
  • Size: 8.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.9.18 Darwin/23.2.0

File hashes

Hashes for autoresevaluator-0.1.7.tar.gz
Algorithm Hash digest
SHA256 da3d85232d4803f8404e9190dd5bf0b3c6669e1fe3cd4f567122bd8232570c00
MD5 3cccaaf22abec7a19804909265a74ff6
BLAKE2b-256 d9d22fee3f3731c4799c43c7eab71f86e34576738a6c58bfb4abae461df19b88

See more details on using hashes here.

File details

Details for the file autoresevaluator-0.1.7-py3-none-any.whl.

File metadata

File hashes

Hashes for autoresevaluator-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 ddfdab46ba2fb5691b11fd26351db66c312907d69cba371bbd78ab297ff30c2a
MD5 843ac3bb8bec00e8286ebd46fcbdc553
BLAKE2b-256 d52917a120bd951b18e726dc8cc985c1e2c2b9a14dbafb4faeb6f98aa6bd57e9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page