Skip to main content

No project description provided

Project description

AutoRes Evaluator

※ 追加で実装して欲しい機能や質問などがあれば以下のissuesから投稿をお願いします

https://github.com/auto-res/autores-evaluator/issues/new

Examples

  • Prediction by logistic regression on the Titanic dataset Open In Colab

  • Prediction by CNN on CIFAR10 Open In Colab

Architecture

ロゴ1

How to use

pip install autoresevaluator

from autoresevaluator import AutoResEvaluator
  • Setting
# Hyperparameter setting
# Specify "type" and "args" for items to be searched in optuna.
params = {
    'lambda_l1': {'type': 'log_float', 'args': [1e-8, 10.0]},
    'lambda_l2': {'type': 'log_float', 'args': [1e-8, 10.0]},
    'num_leaves': {'type': 'int', 'args': [2, 256]},
    'feature_fraction': {'type': 'float', 'args': [0.4, 1.0]},
    'bagging_fraction': {'type': 'float', 'args': [0.4, 1.0]},
    'verbosity': -1
}

are = AutoResEvaluator(
    # dataset name
    dataset_name='titanic',
    # model file path
    model_path='/content/example.py',
    # parameter
    params=params,
    # Metrics you want to maximize/minimize
    valuation_index='roc_auc',
    # Where to store data
    datasave_path=None
    )
  • Execution
are.exec()

Output

  • result.log

    • File to output the results
  • model_error.log

    • File to write errors in model files

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autoresevaluator-0.1.8.tar.gz (9.5 kB view details)

Uploaded Source

Built Distribution

autoresevaluator-0.1.8-py3-none-any.whl (13.5 kB view details)

Uploaded Python 3

File details

Details for the file autoresevaluator-0.1.8.tar.gz.

File metadata

  • Download URL: autoresevaluator-0.1.8.tar.gz
  • Upload date:
  • Size: 9.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.9.18 Darwin/23.2.0

File hashes

Hashes for autoresevaluator-0.1.8.tar.gz
Algorithm Hash digest
SHA256 543fbbd7e1010816a35383419153df159b793baf4a0a3bef32c4bffc68680416
MD5 0aa0696d6d642057d288e3525f603950
BLAKE2b-256 e0cd4adf742bd11d4ff0a82408ef5ab681d3a41e43dd7dca939e6f9a975d8e92

See more details on using hashes here.

File details

Details for the file autoresevaluator-0.1.8-py3-none-any.whl.

File metadata

File hashes

Hashes for autoresevaluator-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 42fc4d69e51bd4eaf2a17c0e07aa16192fb47ea86c2c7468317656325c1037a2
MD5 bdc3b35c5b6fc9f123ba62bf228dcc27
BLAKE2b-256 ab3b4214bcfe83e6a64ecea038e4e23c8eb2d1db92a0a736eb59e64847d15a02

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page