Skip to main content

No project description provided

Project description

AutoRes Evaluator

※ 追加で実装して欲しい機能や質問などがあれば以下のissuesから投稿をお願いします

https://github.com/auto-res/autores-evaluator/issues/new

Examples

  • Prediction by logistic regression on the Titanic dataset Open In Colab

  • Prediction by CNN on CIFAR10 Open In Colab

Architecture

ロゴ1

How to use

pip install autoresevaluator

from autoresevaluator import AutoResEvaluator
  • Setting
# Hyperparameter setting
# Specify "type" and "args" for items to be searched in optuna.
params = {
    'lambda_l1': {'type': 'log_float', 'args': [1e-8, 10.0]},
    'lambda_l2': {'type': 'log_float', 'args': [1e-8, 10.0]},
    'num_leaves': {'type': 'int', 'args': [2, 256]},
    'feature_fraction': {'type': 'float', 'args': [0.4, 1.0]},
    'bagging_fraction': {'type': 'float', 'args': [0.4, 1.0]},
    'verbosity': -1
}

are = AutoResEvaluator(
    # dataset name
    dataset_name='titanic',
    # model file path
    model_path='/content/example.py',
    # parameter
    params=params,
    # Metrics you want to maximize/minimize
    valuation_index='roc_auc',
    # Where to store data
    datasave_path=None
    )
  • Execution
are.exec()

Output

  • result.log

    • File to output the results
  • model_error.log

    • File to write errors in model files

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autoresevaluator-0.1.9.tar.gz (9.5 kB view details)

Uploaded Source

Built Distribution

autoresevaluator-0.1.9-py3-none-any.whl (13.5 kB view details)

Uploaded Python 3

File details

Details for the file autoresevaluator-0.1.9.tar.gz.

File metadata

  • Download URL: autoresevaluator-0.1.9.tar.gz
  • Upload date:
  • Size: 9.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.9.18 Darwin/23.2.0

File hashes

Hashes for autoresevaluator-0.1.9.tar.gz
Algorithm Hash digest
SHA256 55bfb38e91745cee8a03b75b0263cdac486961fdd4cd84df889f23f6d6dd24de
MD5 86d54a120e6833387947bb7e8b853ecf
BLAKE2b-256 1d29071adc8c59c68e38dcc18f00e92ddcaef0e3f43bbf80e417eb54a39479fe

See more details on using hashes here.

File details

Details for the file autoresevaluator-0.1.9-py3-none-any.whl.

File metadata

File hashes

Hashes for autoresevaluator-0.1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 cca66274cc9d107d7e93d2ea2958d505ba3802bcc21b953f427fa4314d399bb7
MD5 76512fc246e2d5bdb2dd4258e605664b
BLAKE2b-256 e1c5535e9a590d28525fc1142b87c1c02d779f61ffd373645da1b9eb3d09db68

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page