Backend.AI Manager
Project description
Backend.AI Manager with API Gateway
Package Structure
ai.backend
manager
: Abstraction of agents and computation kernelsgateway
: User and Admin API (REST/GraphQL) gateway based on aiohttp
Installation
Please visit the installation guides.
Kernel/system configuration
Recommended resource limits:
/etc/security/limits.conf
root hard nofile 512000
root soft nofile 512000
root hard nproc 65536
root soft nproc 65536
user hard nofile 512000
user soft nofile 512000
user hard nproc 65536
user soft nproc 65536
sysctl
fs.file-max=2048000
net.core.somaxconn=1024
net.ipv4.tcp_max_syn_backlog=1024
net.ipv4.tcp_slow_start_after_idle=0
net.ipv4.tcp_fin_timeout=10
net.ipv4.tcp_window_scaling=1
net.ipv4.tcp_tw_reuse=1
net.ipv4.tcp_early_retrans=1
net.ipv4.ip_local_port_range="10000 65000"
net.core.rmem_max=16777216
net.core.wmem_max=16777216
net.ipv4.tcp_rmem=4096 12582912 16777216
net.ipv4.tcp_wmem=4096 12582912 16777216
For development
Prerequisites
libnsappy-dev
orsnappy-devel
system package depending on your distro- Python 3.6 or higher with pyenv and pyenv-virtualenv (optional but recommneded)
- Docker 18.03 or later with docker-compose (18.09 or later is recommended)
Common steps
Clone the meta repository and install a "halfstack" configuration. The halfstack configuration installs and runs several dependency daemons such as etcd in the background.
$ git clone https://github.com/lablup/backend.ai halfstack
$ cd halfstack
$ docker-compose -f docker-compose.halfstack.yml up -d
Then prepare the source clone of the agent as follows. First install the current working copy.
$ git clone https://github.com/lablup/backend.ai-manager manager
$ cd manager
$ pyenv virtualenv venv-manager
$ pyenv local venv-manager
$ pip install -U pip setuptools
$ pip install -U -r requirements/dev.txt
From now on, let's assume all shell commands are executed inside the virtualenv.
Halfstack (single-node development & testing)
Recommended directory structure
backend.ai-dev
manager
(git clone from this repo)agent
(git clone from the agent repo)common
(git clone from the common repo)
Install backend.ai-common
as an editable package in the manager (and the agent) virtualenvs
to keep the codebase up-to-date.
$ cd manager
$ pip install -U -e ../common
Steps
Copy (or symlink) the halfstack configs:
$ cp config/halfstack.toml ./manager.toml
$ cp config/halfstack.alembic.ini ./alembic.ini
Set up Redis:
$ python -m ai.backend.manager.cli etcd put config/redis/addr 127.0.0.1:8110
Set up the public Docker registry:
$ python -m ai.backend.manager.cli etcd put config/docker/registry/index.docker.io "https://registry-1.docker.io"
$ python -m ai.backend.manager.cli etcd put config/docker/registry/index.docker.io/username "lablup"
$ python -m ai.backend.manager.cli etcd rescan-images index.docker.io
Set up the vfolder paths:
$ mkdir -p "$HOME/vfroot/local"
$ python -m ai.backend.manager.cli etcd put volumes/_mount "$HOME/vfroot"
$ python -m ai.backend.manager.cli etcd put volumes/_default_host local
Set up the allowed types of vfolder. Allowed values are "user" or "group". If none is specified, "user" type is set implicitly:
$ python -m ai.backend.manager.cli etcd put volumes/_types/user "" # enable user vfolder
$ python -m ai.backend.manager.cli etcd put volumes/_types/group "" # enable group vfolder
Set up the database:
$ python -m ai.backend.manager.cli schema oneshot
$ python -m ai.backend.manager.cli fixture populate sample-configs/example-keypairs.json
$ python -m ai.backend.manager.cli fixture populate sample-configs/example-resource-presets.json
Then, run it (for debugging, append a --debug
flag):
$ python -m ai.backend.gateway.server
To run tests:
$ python -m flake8 src tests
$ python -m pytest -m 'not integration' tests
Now you are ready to install the agent. Head to the README of Backend.AI Agent.
NOTE: To run tests including integration tests, you first need to install and run the agent on the same host.
Deployment
Configuration
Put a TOML-formatted manager configuration (see the sample in config/sample.toml
)
in one of the following locations:
manager.toml
(current working directory)~/.config/backend.ai/manager.toml
(user-config directory)/etc/backend.ai/manager.toml
(system-config directory)
Only the first found one is used by the daemon.
Also many configurations shared by both manager and agent are stored in etcd. As you might have noticed above, the manager provides a CLI interface to access and manipulate the etcd data. Check out the help page of our etcd command set:
$ python -m ai.backend.manager.cli etcd --help
If you run etcd as a Docker container (e.g., via halfstack), you may use the native client as well. In this case, PLEASE BE WARNED that you must prefix the keys with "/sorna/{namespace}" manaully:
$ docker exec -it ${ETCD_CONTAINER_ID} /bin/ash -c 'ETCDCTL_API=3 etcdctl ...'
Running from a command line
The minimal command to execute:
python -m ai.backend.gateway.server
For more arguments and options, run the command with --help
option.
Writing a wrapper script
To use with systemd, crontab, and other system-level daemons, you may need to write a shell script that executes specific CLI commands provided by Backend.AI modules.
The following example shows how to set up pyenv and virtualenv for the script-local environment.
It runs the gateway server if no arguments are given, and execute the given arguments as a shell command
if any.
For instance, you may get/set configurations like: run-manager.sh python -m ai.backend.manager.etcd ...
where the name of scripts is run-manager.sh
.
#! /bin/bash
if [ -z "$HOME" ]; then
export HOME="/home/devops"
fi
if [ -z "$PYENV_ROOT" ]; then
export PYENV_ROOT="$HOME/.pyenv"
export PATH="$PYENV_ROOT/bin:$PATH"
fi
eval "$(pyenv init -)"
eval "$(pyenv virtualenv-init -)"
pyenv activate venv-bai-manager
if [ "$#" -eq 0 ]; then
exec python -m ai.backend.gateway.server
else
exec "$@"
fi
Networking
The manager and agent should run in the same local network or different networks reachable via VPNs, whereas the manager's API service must be exposed to the public network or another private network that users have access to.
The manager requires access to the etcd, the PostgreSQL database, and the Redis server.
User-to-Manager TCP Ports | Usage |
---|---|
manager:{80,443} | Backend.AI API access |
Manager-to-X TCP Ports | Usage |
---|---|
etcd:2379 | etcd API access |
postgres:5432 | Database access |
redis:6379 | Redis API access |
The manager must also be able to access TCP ports 6001, 6009, and 30000 to 31000 of the agents in default configurations. You can of course change those port numbers and ranges in the configuration.
Manager-to-Agent TCP Ports | Usage |
---|---|
6001 | ZeroMQ-based RPC calls from managers to agents |
6009 | HTTP watcher API |
30000-31000 | Port pool for in-container services |
LICENSES
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for backend.ai-manager-20.9.0a2.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | bc11b44a95120ad03c0747ce0fc301a33e96a20ae81954b43d1d1704d5856285 |
|
MD5 | 070cd95a8e93b55243dbeb2f22fa2d60 |
|
BLAKE2b-256 | 3ae7d306d13ec248540d597493e9fedd13b8807076b70d3ce0a57544c8658b8e |
Hashes for backend.ai_manager-20.9.0a2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 43ec753c9a1f45b8b7b3042b6cd72b879a954501351eb338eea40b5a89405216 |
|
MD5 | a83ab2c195089990f0c4ea0ae381af11 |
|
BLAKE2b-256 | b6044ad283e7e75663da59277a9670699df27a1d686377fdc30522e12add6ddc |