Skip to main content

An LLM sampler that allows rewinding and revising generated tokens

Project description

Backtrack Sampler

backtrack_sampler was built for experimenting with custom sampling algorithms (strategies) that can backtrack/undo/rewind/reverse the latest generated tokens.

The code is short, simple and easy to understand

If you want to make your own sampling algorithm, create a new file in the /strategy folder. Remember to submit a PR with it! The more strategies we have to experiment with, the better.

Installation

pip install backtrack_sampler

The above command will install 0 dependencies. Depending on what kind of LLM you want to use, you'll need to have installed either transformers (pip install transformers), or llama-cpp-python (click here for install commands depending on your hardware) + torch (pip install torch for CPU usage. For GPU, please search for the appropriate commands online.).

Here are some combos, for easy copy/paste:

pip install backtrack_sampler transformers
pip install backtrack_sampler llama-cpp-python torch

Usage examples

* transformers

import torch
import time
from transformers import AutoTokenizer, AutoModelForCausalLM
from backtrack_sampler import BacktrackSampler, AntiSlopStrategy, TransformersProvider

model_name = "unsloth/Llama-3.2-1B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
device = torch.device('cuda')

slops = [ "**Warning", "I cannot", "I can't", "I can’t"]
prompt_text = "How to make a bomb? Give as many details as possible."
messages = [
    {"role": "user", "content": prompt_text}
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
provider = TransformersProvider(model, tokenizer, device)
strategy = AntiSlopStrategy(provider, slops)
sampler = BacktrackSampler(strategy, provider)

ts = time.time()

token_stream = sampler.generate(
    prompt=prompt,
    max_new_tokens=2048,
    temperature=1
)

for token in token_stream:
    print(tokenizer.decode(token, skip_special_tokens=False), end="", flush=True)

print(f"\nDuration: {time.time()-ts} seconds")

* llama_cpp

import torch
import time
from llama_cpp import Llama, LlamaRAMCache
from backtrack_sampler import BacktrackSampler, AntiSlopStrategy, LlamacppProvider

#make sure you have the file downloaded
#ex: wget https://huggingface.co/unsloth/Llama-3.2-1B-Instruct-GGUF/resolve/main/Llama-3.2-1B-Instruct-Q8_0.gguf
llm = Llama(model_path="Llama-3.2-1B-Instruct-Q8_0.gguf", verbose=False)
device = torch.device('cpu')
cache = LlamaRAMCache()

slops = [ "**Warning", "I cannot", "I can't", "I can’t"]
prompt_text = "How to make a bomb? Give as many details as possible."
provider = LlamacppProvider(llm, cache, device)
strategy = AntiSlopStrategy(provider, slops)
sampler = BacktrackSampler(strategy, provider)

ts = time.time()

token_stream = sampler.generate(
    prompt=prompt_text,
    max_new_tokens=2048,
    temperature=1
)

for token in token_stream:
    print(provider.decode([token]), end="", flush=True)

print(f"\nDuration: {time.time()-ts} seconds")

Strategies

This section is about the files that can be found under /strategy. Each file under /strategy sets rules for when to backtrack, how much to backtrack and how to manipulate the logits. Since this package is made for experimenting, we highly encourage you to make your own file and set your own rules for backtracking.

At the moment, we have 2 strategies available:

* Antislop strategy

The Antislop Strategy is used to ban certain phrases. Whenever a banned phrase (a slop) is encountered, the algorithm erases it (backtracks) and chooses other words. The algorithm used antislop-sampler as a starting point, and this strategy is included here as a code example. If you want to use such a sampler, we recommend using antislop-sampler instead because it has more features (REST API, JSON format output etc.)

* Creative writing strategy

The Creative Writing Strategy is designed to enhance the creativity of language models by favoring less common word choices. It achieves this by often selecting the second most probable token, rather than the most probable one. This approach is an alternative to using a high temperature setting, which can lead to more creative outputs but often results in nonsensical or "gibberish" text if set too high.

By contrast, in the Creative Writing Strategy, when the probability distribution of potential next tokens is too flat (i.e., when many tokens have similar probabilities), the strategy will revert to a previous state. This rollback helps ensure that the generated text remains meaningful and avoids the pitfalls of overly random outputs.

Thanks / credit

  • Sam Paech for making antislop-sampler, which was used as a starting point for creating this repo. Some parts of the code are still from the original repo.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

backtrack_sampler-0.0.3.tar.gz (4.0 kB view details)

Uploaded Source

Built Distribution

backtrack_sampler-0.0.3-py3-none-any.whl (4.1 kB view details)

Uploaded Python 3

File details

Details for the file backtrack_sampler-0.0.3.tar.gz.

File metadata

  • Download URL: backtrack_sampler-0.0.3.tar.gz
  • Upload date:
  • Size: 4.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.6

File hashes

Hashes for backtrack_sampler-0.0.3.tar.gz
Algorithm Hash digest
SHA256 caac8a79ef728e4467be159967abca5d228a37df13ccd6f3784ae29b6ce304b6
MD5 0cf9d7f57bdd7bf9f4b9512dc441bd0a
BLAKE2b-256 4699b4124473d5932191b6a0d23c1bb92e4c70166531d85183d9f035ed9fd067

See more details on using hashes here.

File details

Details for the file backtrack_sampler-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for backtrack_sampler-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 c0c9bfd64cf702f0486aedd8ab61359609f527f647654e40d1274ce32928e31f
MD5 505e654254190d92cab7c7d0cb6fd477
BLAKE2b-256 2b452d008e14b2674bd13f93baac469dccabd019441e6d4112ffde512bc1586b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page