Skip to main content

bamboolib - a GUI for pandas

Project description

bamboolib - a GUI for pandas 🐼🐍

Python Data Science for Everyone

bamboolib is a GUI for pandas DataFrames that enables anyone to work with Python in Jupyter Notebook or JupyterLab

  • Intuitive GUI that exports Python code
  • Supports all common transformations and visualizations
  • Transformations come with full keyboard control
  • Provides best-practice analyses for data exploration
  • Add custom transformations, visualizations and data loaders via simple Python plugins
  • Integrate your company's internal Python libraries

Used in more than 100 companies

These are the benefits bamboolib creates for them

  • Enables data analysts and scientists to work with Python without having to write code.
  • Reduces the on-boarding time and training costs for data analysts and scientists
  • Enables data analysts to collaborate with data scientists within Jupyter and to share the working results as reproducible code
  • Compared to other enterprise AI platforms, bamboolib creates no technical lock-in and provides the greatest flexibility via leveraging Python
  • All your data remains private and secure

🔍 Get free trial access

Installation

Install bamboolib for Jupyter Notebook or Jupyter Lab by running the code below in your terminal (or Anaconda Prompt for Windows)

pip install bamboolib

# Jupyter Notebook extensions
python -m bamboolib install_nbextensions

# JupyterLab extensions
python -m bamboolib install_labextensions

After you have installed bamboolib, you can go here to test bamboolib.

Documentation

You find out how to get started along with tutorials and an API reference on our docs.

Further links

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

bamboolib-1.26.0-cp39-cp39-win_amd64.whl (6.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

bamboolib-1.26.0-cp39-cp39-win32.whl (5.5 MB view details)

Uploaded CPython 3.9 Windows x86

bamboolib-1.26.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ x86-64

bamboolib-1.26.0-cp39-cp39-macosx_10_9_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

bamboolib-1.26.0-cp38-cp38-win_amd64.whl (6.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

bamboolib-1.26.0-cp38-cp38-win32.whl (5.4 MB view details)

Uploaded CPython 3.8 Windows x86

bamboolib-1.26.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ x86-64

bamboolib-1.26.0-cp38-cp38-macosx_10_9_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

bamboolib-1.26.0-cp37-cp37m-win_amd64.whl (5.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

bamboolib-1.26.0-cp37-cp37m-win32.whl (5.3 MB view details)

Uploaded CPython 3.7m Windows x86

bamboolib-1.26.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

bamboolib-1.26.0-cp37-cp37m-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

bamboolib-1.26.0-cp36-cp36m-win_amd64.whl (5.7 MB view details)

Uploaded CPython 3.6m Windows x86-64

bamboolib-1.26.0-cp36-cp36m-win32.whl (5.1 MB view details)

Uploaded CPython 3.6m Windows x86

bamboolib-1.26.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.5+ x86-64

bamboolib-1.26.0-cp36-cp36m-macosx_10_9_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file bamboolib-1.26.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: bamboolib-1.26.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for bamboolib-1.26.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e76bb71ee3b8f0bbbb1416f6a3b56223da526aab694dfdc32445f0fabc493237
MD5 df2446ea3a54f46e733b27cb4b6af950
BLAKE2b-256 8ffb50e605bd8da9c8d83114510dd86bf5537c2ff7483510ce42dbe8ec05f136

See more details on using hashes here.

File details

Details for the file bamboolib-1.26.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: bamboolib-1.26.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for bamboolib-1.26.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b5a713520f210e8daa9991b815689c032e0d14d2fc5c42a19bd4aaed3c8cdf17
MD5 c231e91621ee88eff406830a9b266abd
BLAKE2b-256 26f93dc64f32e3771946a421ec052495b9a23450e6551f3b30f2eb46cebad02f

See more details on using hashes here.

File details

Details for the file bamboolib-1.26.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for bamboolib-1.26.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c86d45aa6983352994ac11d24523bffdc049f21e29772636ddd1926b5edc2cc2
MD5 584171c74b9dad3c5b9f1f291c5346d2
BLAKE2b-256 2825bf971ba2cb17c8751f89865286b64ceb27b3ab14c81557d7d9fbe61c36ca

See more details on using hashes here.

File details

Details for the file bamboolib-1.26.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: bamboolib-1.26.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 7.6 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for bamboolib-1.26.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0c0c5c557383f147d6015d874ffaea53eb0f4586692fc7348cf831893c3986e8
MD5 189f03a124e997e66cee6363b5d78771
BLAKE2b-256 ee9c436e67691846b6da064000aa1f44480b32f8a3ea8d990e097e9d39b5a9bd

See more details on using hashes here.

File details

Details for the file bamboolib-1.26.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: bamboolib-1.26.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 6.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for bamboolib-1.26.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2bd01e30b25dd0225505b1e31f32a921ae2f00f0595b14142eac84e12e65cfcc
MD5 160d72a79871a0f88dc9c43327b48b7e
BLAKE2b-256 02b110a9469cb9c8305dd3fd4267c22c6e339864518e64848cd22b5bd405c8eb

See more details on using hashes here.

File details

Details for the file bamboolib-1.26.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: bamboolib-1.26.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for bamboolib-1.26.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7e96edaec00781988716dca83b6e0ea477a62571a828c30127bf85429eac7835
MD5 128e9f98dccfb5c64ec911acd671ba50
BLAKE2b-256 96802b20c1c82fdf654f305dde956edeb6cbb0b65bc5b662105272f24a565355

See more details on using hashes here.

File details

Details for the file bamboolib-1.26.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for bamboolib-1.26.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b6a90d402f9a47bd2e81b07921312675c05aa69e619d1962173baa82e5d78d20
MD5 385b78f57c63d4e481d4eb4cec05f78d
BLAKE2b-256 1597b9f708de2421ba71c1f46d081a74917e35951ea2bbaea09c95754a2d1896

See more details on using hashes here.

File details

Details for the file bamboolib-1.26.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: bamboolib-1.26.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 7.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for bamboolib-1.26.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a69151dcef99c7a75b3474bc114affe37e200f630f9bdbc891c08c06eeda053e
MD5 157af31c283bdfdea1e50d5a0ae263fc
BLAKE2b-256 3ab5007f43dfde8a96b437157b82a3ec75c1d1bc0bfedf1fb64174b8ae391b13

See more details on using hashes here.

File details

Details for the file bamboolib-1.26.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: bamboolib-1.26.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 5.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for bamboolib-1.26.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4a6a791dbf099c8b7478f5694ddd8c9f54de2e1c1a879fdeea1b5bb2c9d31c10
MD5 853cc74c34db70a6f5030956e6cf7340
BLAKE2b-256 35eba0def6ec1dbb4ccc6b8e6cda2cafead4c90b91bde2ff9f23940987b64ac8

See more details on using hashes here.

File details

Details for the file bamboolib-1.26.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: bamboolib-1.26.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for bamboolib-1.26.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 f84cc05aabd15179f3444373a90c28badc24b5b992d6bef1cd0d631048e8b1cc
MD5 ef9167554ac46ebabbfaad6a63170d1e
BLAKE2b-256 17212e06e14073bf755aba5300e9e26568319a013f47282a4064a3f69f75e401

See more details on using hashes here.

File details

Details for the file bamboolib-1.26.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for bamboolib-1.26.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 442daa9e6ff1bc32ac1ce49d2596c6e789866a298a97b034a0a6f313621d0422
MD5 cd43d59b462775a2d39d07f5229c1e54
BLAKE2b-256 b443f6cc1b10e0bbf654c56f3509a56e61de0f27f8038abc13089efbe7ae03fc

See more details on using hashes here.

File details

Details for the file bamboolib-1.26.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: bamboolib-1.26.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 7.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for bamboolib-1.26.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 346404d3b1274bffbba34fffcec006217cce067cc3017578a94e319ddd87e902
MD5 f34993134c7c05b9614c7d1b3aad9718
BLAKE2b-256 7f01c6da87024b87677b755fa00b96b8597e796147b0006b0c0cfa4258e27c53

See more details on using hashes here.

File details

Details for the file bamboolib-1.26.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: bamboolib-1.26.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 5.7 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for bamboolib-1.26.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ee5a1f1a9b01879a610a5bfa0e517bf6ea7b6cbec139835bdc0da377156491af
MD5 1e96345bec76029143bcb18f2f666fcf
BLAKE2b-256 91d74cd5c933bcf823aa8d35ea46d9c283862e72d4a3df2a616535484fe91c6f

See more details on using hashes here.

File details

Details for the file bamboolib-1.26.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: bamboolib-1.26.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for bamboolib-1.26.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 48136393ddcc14e3e0c292b17de7766280f7503c1b5dafe4e9f306d66758043a
MD5 684774f594a7510873a3f76c43d8d007
BLAKE2b-256 03f7c20156f6f069a57f8be1d132e6fccf598626d22596d7e297549225b5fade

See more details on using hashes here.

File details

Details for the file bamboolib-1.26.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for bamboolib-1.26.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1f60209899098d74fd89f5c369d06bd5a053112e572ffd88144ccf911e193f9f
MD5 d3f619b2d096a08481d2bf5466af0696
BLAKE2b-256 efcddff0aad52364d815a4ab1510913258fc48fb12dad690dff4840a5a640f38

See more details on using hashes here.

File details

Details for the file bamboolib-1.26.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: bamboolib-1.26.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for bamboolib-1.26.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bb2a64a7a3471fbb8c983896799a443f76ba530503845740fc63d7dd768e095e
MD5 35dbac77338d0d9e70bd2a248110b451
BLAKE2b-256 fb016cbbf7b41007eeee7558bbd3e93024200133437a01326b6743dcab6dfb8d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page