Skip to main content

bamboolib - a GUI for pandas

Project description

bamboolib - a GUI for pandas 🐼🐍

Python Data Science for Everyone

bamboolib is a GUI for pandas DataFrames that enables anyone to work with Python in Jupyter Notebook or JupyterLab

  • Intuitive GUI that exports Python code
  • Supports all common transformations and visualizations
  • Transformations come with full keyboard control
  • Provides best-practice analyses for data exploration
  • Add custom transformations, visualizations and data loaders via simple Python plugins
  • Integrate your company's internal Python libraries

Used in more than 100 companies

These are the benefits bamboolib creates for them

  • Enables data analysts and scientists to work with Python without having to write code.
  • Reduces the on-boarding time and training costs for data analysts and scientists
  • Enables data analysts to collaborate with data scientists within Jupyter and to share the working results as reproducible code
  • Compared to other enterprise AI platforms, bamboolib creates no technical lock-in and provides the greatest flexibility via leveraging Python
  • All your data remains private and secure

🔍 Get free trial access

Installation

Install bamboolib for Jupyter Notebook or Jupyter Lab by running the code below in your terminal (or Anaconda Prompt for Windows)

pip install bamboolib

# Jupyter Notebook extensions
python -m bamboolib install_nbextensions

# JupyterLab extensions
python -m bamboolib install_labextensions

After you have installed bamboolib, you can go here to test bamboolib.

Documentation

You find out how to get started along with tutorials and an API reference on our docs.

Further links

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

bamboolib-1.28.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ x86-64

bamboolib-1.28.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ x86-64

bamboolib-1.28.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

bamboolib-1.28.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.5+ x86-64

File details

Details for the file bamboolib-1.28.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for bamboolib-1.28.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d65ba180014a7c0c88c47c684e4b1ba20d9ac5b3d42bc117c825727df3fa6a31
MD5 c5511ba57695b832caf88c5b6751852b
BLAKE2b-256 a9dd19904886ed4171b9833633ed31d1c10e163ad1f867127550f5a19caa7cb5

See more details on using hashes here.

File details

Details for the file bamboolib-1.28.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for bamboolib-1.28.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c45830e9f96f5ee66a557e4b11b7e9b0b9154baa42be1a72ff7d3399ab054a51
MD5 30f3f18bf20d339a53bb20506d5c1999
BLAKE2b-256 2ebc16a16455a4b430de8b1474f6a40a80bbf11cade4bd41cc4881f2657d858e

See more details on using hashes here.

File details

Details for the file bamboolib-1.28.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for bamboolib-1.28.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1d2f4cb28ef6f3ee976f74c2941589f5d1727665e8862d1a6c14e14579e9deb1
MD5 8fe037ac4277f250f9700ff92eb326fc
BLAKE2b-256 bb8513768880155e71b9edb20beb85136b605e25e42ebd8ecbbb5b610ec4267a

See more details on using hashes here.

File details

Details for the file bamboolib-1.28.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for bamboolib-1.28.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 00e64aea68bee84236e2d5c5011400bb2fb672c2f1e0cfe4696a9d5a5600c2d8
MD5 419f4a2cb5785887addad7b61720dbfa
BLAKE2b-256 a549515aeecae46998beb311d43f9c26787f96dc30596303969e24d7a3415082

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page