A package for Bayesian Hierarchical Clustering
Project description
Installation Instructions
Run following code in terminal: python3 -m pip install bayesHC1
Then import package and load cython as follows: import bayesHC1
Documentation
bayesHC.bayes_hier_clust(data_vec, alpha, alpha0, beta, kappa, mu)
Given a tuple of datapoints, build a hierarchical cluster tree. Algorithm will continue merging clusters until there is only one overarching cluster. This algorithm is recommended for clustering $<$23 observations.
Parameters: alpha : the expected number of clusters
alpha0 : scale hyperparameter for gamma prior
beta : location hyperparameter for gamma prior
kappa : precision hyperparameter for normal prior
mu : mean hyperparameer for normal prior
Returns:nested tuple
Returns a tuple with the following structure: cluster = (c_num,left,right,value,n_k,p_k,d_k)
Where:
c_num : the number of the cluster
left : the entire cluster tuple for one subcluster
right : the entire cluster tuple for the other subcluster
value : all data values included in the cluster
n_k : number of datapoints in the cluster
p_k : the prior on merging
d_k : a weight on the volume of data in pairs of clusters on the subtree T_k
Example
<<<import pandas as pd <<<df_sim = pd.read_table('simulated_data.csv',delimiter = ",") <<<value = tuple([points] for points in df_sim.loc[:4,'values']) <<<mu, kappa = 0, 100 # mean and standard deviation <<<alpha, beta = 2,10 # scale and location <<<z = bayes_hier_clust(value, alpha, beta, kappa,mu) <<<z
[(9, (4, 0, 0, [24.649825190000001], 1, 1, 2.0), (8, (5, 0, 0, [20.543137890000001], 1, 1, 2.0), (7, (1, 0, 0, [19.404575810000001], 1, 1, 2.0), (6, (2, 0, 0, [4.4017292919999997], 1, 1, 2.0), (3, 0, 0, [10.766117830000001], 1, 1, 2.0), [4.4017292919999997, 10.766117830000001], 2, 0.3333333432674408, 6.0), [19.404575810000001, 4.4017292919999997, 10.766117830000001], 3, 0.25, 16.0), [20.543137890000001, 19.404575810000001, 4.4017292919999997, 10.766117830000001], 4, 0.27272728085517883, 44.0), [24.649825190000001, 20.543137890000001, 19.404575810000001, 4.4017292919999997, 10.766117830000001], 5, 0.3529411852359772, 136.0)]
z[1] (4, 0, 0, [24.649825190000001], 1, 1, 2.0)
Last updated on April 30, 2019.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file bayesHC1-0.0.1.tar.gz
.
File metadata
- Download URL: bayesHC1-0.0.1.tar.gz
- Upload date:
- Size: 4.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 868d84080ed5abcc96897300959af7959c9c5bc9004e0df9a8947ad69d936e0e |
|
MD5 | 94af08679c344841015c97e82f218b69 |
|
BLAKE2b-256 | e1848dea75673d3141002e5188a7a65526ffef9379dd24a1862b789e05e4bfef |
File details
Details for the file bayesHC1-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: bayesHC1-0.0.1-py3-none-any.whl
- Upload date:
- Size: 5.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ce4630c5de195d0407a75c7bef561da36c0acc7b56f0ca2b26a0d01b60bf214 |
|
MD5 | 0653396f6634cdca07788522a2d32be7 |
|
BLAKE2b-256 | 211e8d10b5dc233af8712d43be77ac12fe1ec18843ce3ef672ccfaebf94d450c |