Skip to main content

Bayesian inference of algorithm performance using permutation models.

Project description

BayesPermus

Bayesian inference of algorithm performance using permutation models.

Installation

pip install BayesPermus

Usage

  1. Prepare permutation data:
permus = np.array([[1,2,3], [1,3,2]])
  1. Obtain the marginal probabilities:
from BayesPermus.models.BradleyTerry import BradleyTerry

# BT Dirichlet hyper-priors
dirichlet_alpha_bt = [1, 1, 1]

# Create Bayesian inference model
bradleyTerry = BradleyTerry(dirichlet_alpha_bt, num_samples=1000)

# Calculate the marginal probabilities
probs = bradleyTerry.calculate_top_ranking_probs(permus)

Additional available models

  • Bradley-Terry:
from BayesPermus.models.BradleyTerry import BradleyTerry
  • Plackett-Luce:
from BayesPermus.models.PlackettLuce import PlackettLuceDirichlet
from BayesPermus.models.PlackettLuce import PlackettLuceGamma
  • Mallows Model:
from BayesPermus.models.MallowsModel import MallowsModel

Additional available marginals

  • Probability of an algorithm to be in the first position: model.calculate_top_ranking_probs(...).
  • Probability of an algorithm to outperform another: model.calculate_better_than_probs(...).
  • Probability of an algorithm to be in the top-k ranking: model.calculate_top_k_probs(...).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

BayesPermus-1.0.0.tar.gz (8.9 kB view details)

Uploaded Source

Built Distribution

BayesPermus-1.0.0-py3-none-any.whl (10.4 kB view details)

Uploaded Python 3

File details

Details for the file BayesPermus-1.0.0.tar.gz.

File metadata

  • Download URL: BayesPermus-1.0.0.tar.gz
  • Upload date:
  • Size: 8.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.10

File hashes

Hashes for BayesPermus-1.0.0.tar.gz
Algorithm Hash digest
SHA256 683e465bd9f4f45df3d31becc7ec8492d28407a5643b24905cfa7427137851fa
MD5 fdf3fc54bccfef519f1a6daa5e342a6f
BLAKE2b-256 ef565280430a7b17cbaed1097bb1aef7d8987968e25d9f736607067c5632f63c

See more details on using hashes here.

File details

Details for the file BayesPermus-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: BayesPermus-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 10.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.10

File hashes

Hashes for BayesPermus-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 fb7593ee5f086e66349eb7f83dc20e3d15fffc499ab190c5de6c8b7e6416bdfc
MD5 1d6c36b808d428927869619dec2eaa63
BLAKE2b-256 cee770f7fbf272e91712cdc01da4649c05f4de668b63de7379d394bbf4f7789f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page