Skip to main content

Brain decoder toolbox for Python

Project description

BdPy

PyPI version GitHub license ci

Python package for brain decoding analysis

Requirements

  • Python 3.8 or later
  • numpy
  • scipy
  • scikit-learn
  • pandas
  • h5py
  • hdf5storage
  • pyyaml

Optional requirements

  • dataform module
    • pandas
  • dl.caffe module
    • Caffe
    • Pillow
    • tqdm
  • dl.torch module
    • PyTorch
    • Pillow
  • fig module
    • matplotlib
    • Pillow
  • bdpy.ml module
    • tqdm
  • mri module
    • nipy
    • nibabel
    • pandas
  • recon.torch module
    • PyTorch
    • Pillow

Optional requirements for testing

  • fastl2lir

Installation

Latest stable release:

$ pip install bdpy

To install the latest development version ("master" branch of the repository), please run the following command.

$ pip install git+https://github.com/KamitaniLab/bdpy.git

Packages

  • bdata: BdPy data format (BData) core package
  • dataform: Utilities for various data format
  • distcomp: Distributed computation utilities
  • dl: Deep learning utilities
  • feature: Utilities for DNN features
  • fig: Utilities for figure creation
  • ml: Machine learning utilities
  • mri: MRI utilities
  • opendata: Open data utilities
  • preproc: Utilities for preprocessing
  • recon: Reconstruction methods
  • stats: Utilities for statistics
  • util: Miscellaneous utilities

BdPy data format

BdPy data format (or BrainDecoderToolbox2 data format; BData) consists of two variables: dataset and metadata. dataset stores brain activity data (e.g., voxel signal value for fMRI data), target variables (e.g., ID of stimuli for vision experiments), and additional information specifying experimental design (e.g., run and block numbers for fMRI experiments). Each row corresponds to a single 'sample', and each column representes either single feature (voxel), target, or experiment design information. metadata contains data describing meta-information for each column in dataset.

See BData API examples for useage of BData.

Developers

  • Shuntaro C. Aoki (Kyoto Univ)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bdpy-0.22.tar.gz (81.8 kB view details)

Uploaded Source

Built Distribution

bdpy-0.22-py3-none-any.whl (103.0 kB view details)

Uploaded Python 3

File details

Details for the file bdpy-0.22.tar.gz.

File metadata

  • Download URL: bdpy-0.22.tar.gz
  • Upload date:
  • Size: 81.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/7.0.1 pkginfo/1.10.0 requests/2.31.0 requests-toolbelt/1.0.0 tqdm/4.66.4 CPython/3.8.5

File hashes

Hashes for bdpy-0.22.tar.gz
Algorithm Hash digest
SHA256 72679a1f66c700e116fd108b7a02e21af26dd5e8a704cbfef6cbd36dd9f5606c
MD5 316addbc839fb9f6649734373e575861
BLAKE2b-256 b462874131566696512a3caa6b66f69a5d89bd67898170fecbdb3f4515da2022

See more details on using hashes here.

File details

Details for the file bdpy-0.22-py3-none-any.whl.

File metadata

  • Download URL: bdpy-0.22-py3-none-any.whl
  • Upload date:
  • Size: 103.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/7.0.1 pkginfo/1.10.0 requests/2.31.0 requests-toolbelt/1.0.0 tqdm/4.66.4 CPython/3.8.5

File hashes

Hashes for bdpy-0.22-py3-none-any.whl
Algorithm Hash digest
SHA256 f67bfa07afa66b5242115a60c0bde5427e080d2f4eeeee0e4c3c73d180786f12
MD5 acf629a70c97845dec4580cedb8a8926
BLAKE2b-256 3f4968f898fa577a20b530974e56a3d36eb5cab2dd3c869ab44e5fcc6a56085f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page