Skip to main content

Brain decoder toolbox for Python

Project description

BdPy

PyPI version GitHub license ci

Python package for brain decoding analysis

Requirements

  • Python 3.8 or later
  • numpy
  • scipy
  • scikit-learn
  • pandas
  • h5py
  • hdf5storage
  • pyyaml

Optional requirements

  • dataform module
    • pandas
  • dl.caffe module
    • Caffe
    • Pillow
    • tqdm
  • dl.torch module
    • PyTorch
    • Pillow
  • fig module
    • matplotlib
    • Pillow
  • bdpy.ml module
    • tqdm
  • mri module
    • nipy
    • nibabel
    • pandas
  • recon.torch module
    • PyTorch
    • Pillow

Optional requirements for testing

  • fastl2lir

Installation

Latest stable release:

$ pip install bdpy

To install the latest development version ("master" branch of the repository), please run the following command.

$ pip install git+https://github.com/KamitaniLab/bdpy.git

Packages

  • bdata: BdPy data format (BData) core package
  • dataform: Utilities for various data format
  • distcomp: Distributed computation utilities
  • dl: Deep learning utilities
  • feature: Utilities for DNN features
  • fig: Utilities for figure creation
  • ml: Machine learning utilities
  • mri: MRI utilities
  • opendata: Open data utilities
  • preproc: Utilities for preprocessing
  • recon: Reconstruction methods
  • stats: Utilities for statistics
  • util: Miscellaneous utilities

BdPy data format

BdPy data format (or BrainDecoderToolbox2 data format; BData) consists of two variables: dataset and metadata. dataset stores brain activity data (e.g., voxel signal value for fMRI data), target variables (e.g., ID of stimuli for vision experiments), and additional information specifying experimental design (e.g., run and block numbers for fMRI experiments). Each row corresponds to a single 'sample', and each column representes either single feature (voxel), target, or experiment design information. metadata contains data describing meta-information for each column in dataset.

See BData API examples for useage of BData.

Developers

  • Shuntaro C. Aoki (Kyoto Univ)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bdpy-0.23.tar.gz (95.2 kB view details)

Uploaded Source

Built Distribution

bdpy-0.23-py3-none-any.whl (122.5 kB view details)

Uploaded Python 3

File details

Details for the file bdpy-0.23.tar.gz.

File metadata

  • Download URL: bdpy-0.23.tar.gz
  • Upload date:
  • Size: 95.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/7.0.1 pkginfo/1.10.0 requests/2.31.0 requests-toolbelt/1.0.0 tqdm/4.66.4 CPython/3.8.5

File hashes

Hashes for bdpy-0.23.tar.gz
Algorithm Hash digest
SHA256 fb492e4d03f05eb51b2a7e8b0099efd8da7c58c080380e593f8b0e2aea0ab7ca
MD5 a9e6dc924488357e0de4eee166dd5bb2
BLAKE2b-256 1be2587ef7e460170615589a9301309aa097a438d2a23ec6b2958157d5ad6805

See more details on using hashes here.

File details

Details for the file bdpy-0.23-py3-none-any.whl.

File metadata

  • Download URL: bdpy-0.23-py3-none-any.whl
  • Upload date:
  • Size: 122.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/7.0.1 pkginfo/1.10.0 requests/2.31.0 requests-toolbelt/1.0.0 tqdm/4.66.4 CPython/3.8.5

File hashes

Hashes for bdpy-0.23-py3-none-any.whl
Algorithm Hash digest
SHA256 823654d3d116cf8719ad1d21a07151ffdbf12fd746661d86131cddc46c210074
MD5 b73ddd6153602ce165cc5a7e9f752756
BLAKE2b-256 24bd03a4bf44ec4657dfd611f3fd2fd65228f8203240fa648fa480ca3c9553b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page