Skip to main content

Brain decoder toolbox for Python

Project description

BdPy

PyPI version GitHub license ci

Python package for brain decoding analysis

Requirements

  • Python 3.8 or later
  • numpy
  • scipy
  • scikit-learn
  • pandas
  • h5py
  • hdf5storage
  • pyyaml

Optional requirements

  • dataform module
    • pandas
  • dl.caffe module
    • Caffe
    • Pillow
    • tqdm
  • dl.torch module
    • PyTorch
    • Pillow
  • fig module
    • matplotlib
    • Pillow
  • bdpy.ml module
    • tqdm
  • mri module
    • nipy
    • nibabel
    • pandas
  • recon.torch module
    • PyTorch
    • Pillow

Optional requirements for testing

  • fastl2lir

Installation

Latest stable release:

$ pip install bdpy

To install the latest development version ("master" branch of the repository), please run the following command.

$ pip install git+https://github.com/KamitaniLab/bdpy.git

Packages

  • bdata: BdPy data format (BData) core package
  • dataform: Utilities for various data format
  • distcomp: Distributed computation utilities
  • dl: Deep learning utilities
  • feature: Utilities for DNN features
  • fig: Utilities for figure creation
  • ml: Machine learning utilities
  • mri: MRI utilities
  • opendata: Open data utilities
  • preproc: Utilities for preprocessing
  • recon: Reconstruction methods
  • stats: Utilities for statistics
  • util: Miscellaneous utilities

BdPy data format

BdPy data format (or BrainDecoderToolbox2 data format; BData) consists of two variables: dataset and metadata. dataset stores brain activity data (e.g., voxel signal value for fMRI data), target variables (e.g., ID of stimuli for vision experiments), and additional information specifying experimental design (e.g., run and block numbers for fMRI experiments). Each row corresponds to a single 'sample', and each column representes either single feature (voxel), target, or experiment design information. metadata contains data describing meta-information for each column in dataset.

See BData API examples for useage of BData.

Developers

  • Shuntaro C. Aoki (Kyoto Univ)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bdpy-0.25.1.tar.gz (97.5 kB view details)

Uploaded Source

Built Distribution

bdpy-0.25.1-py3-none-any.whl (127.6 kB view details)

Uploaded Python 3

File details

Details for the file bdpy-0.25.1.tar.gz.

File metadata

  • Download URL: bdpy-0.25.1.tar.gz
  • Upload date:
  • Size: 97.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/7.0.1 pkginfo/1.10.0 requests/2.31.0 requests-toolbelt/1.0.0 tqdm/4.66.4 CPython/3.8.5

File hashes

Hashes for bdpy-0.25.1.tar.gz
Algorithm Hash digest
SHA256 eee10e394b18aa80663b0e937bf5710ea734041f0cb63f39edb73be5d079a765
MD5 b376d199412ecdf168678d6d83d93a14
BLAKE2b-256 55db918170108762d6f4b25f09988835ac56ad6abb0ec1376427c4cf3d8b3a3d

See more details on using hashes here.

File details

Details for the file bdpy-0.25.1-py3-none-any.whl.

File metadata

  • Download URL: bdpy-0.25.1-py3-none-any.whl
  • Upload date:
  • Size: 127.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/7.0.1 pkginfo/1.10.0 requests/2.31.0 requests-toolbelt/1.0.0 tqdm/4.66.4 CPython/3.8.5

File hashes

Hashes for bdpy-0.25.1-py3-none-any.whl
Algorithm Hash digest
SHA256 2de138d53c95184ba3df2bdb8096256f89b5518124bae286330c603693873abc
MD5 cad5b55c38c9352de246796232b65fa2
BLAKE2b-256 c46ec8cf18bf452d2c38be9891a0340435f7af11e4aa6195c9bb7c5be10e4276

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page