Skip to main content

Probabilistic Programming Language for Bayesian Inference

Project description

Bean Machine

Lint Tests PyPI

Overview

Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using a declarative syntax. Bean Machine is built on top of PyTorch and Bean Machine Graph, a custom C++ backend. Check out our tutorials and Quick Start to get started!

Installation

Bean Machine supports Python 3.7, 3.8 and PyTorch 1.10.

Install the Latest Release with Pip

pip install beanmachine

Install from Source

To download the latest Bean Machine source code from GitHub:

git clone https://github.com/facebookresearch/beanmachine.git
cd beanmachine

Then, you can choose from any of the following installation options.

Anaconda

We recommend using conda to manage the virtual environment and install the necessary build dependencies.

conda create -n {env name} python=3.7; conda activate {env name}
conda install boost eigen
pip install .

Docker

docker build -t beanmachine .
docker run -it beanmachine:latest bash

Validate Installation

If you would like to run the builtin unit tests:

# install pytest 7.0 from GitHub
pip install git+https://github.com/pytest-dev/pytest.git@7.0.0.dev0
pytest .

License

Bean Machine is MIT licensed, as found in the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

beanmachine-0.1.0.post1.tar.gz (350.6 kB view details)

Uploaded Source

Built Distributions

beanmachine-0.1.0.post1-cp38-cp38-win_amd64.whl (733.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

beanmachine-0.1.0.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (959.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

beanmachine-0.1.0.post1-cp38-cp38-macosx_10_14_x86_64.whl (837.6 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

beanmachine-0.1.0.post1-cp37-cp37m-win_amd64.whl (732.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

beanmachine-0.1.0.post1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (962.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

beanmachine-0.1.0.post1-cp37-cp37m-macosx_10_14_x86_64.whl (828.9 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file beanmachine-0.1.0.post1.tar.gz.

File metadata

  • Download URL: beanmachine-0.1.0.post1.tar.gz
  • Upload date:
  • Size: 350.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for beanmachine-0.1.0.post1.tar.gz
Algorithm Hash digest
SHA256 0733e6f9485ccbcc8a47cd2639acfc2ba10ecdddff285e6586eed4919e788834
MD5 9d8ad098457d55223443c66df09e1b36
BLAKE2b-256 727efefe9673498f066718a01ac7aacb9850b89f46741483baed2327b010953d

See more details on using hashes here.

File details

Details for the file beanmachine-0.1.0.post1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: beanmachine-0.1.0.post1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 733.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for beanmachine-0.1.0.post1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a4720b7f270c0974b24d41f7372e84ae6c69305dc260855d1ac310d0fec5aa03
MD5 bce913536e6759f993922304554d1a88
BLAKE2b-256 34d5897b7bf563b3914705e205a31ce613ae234514dd1a13a53943e82783e285

See more details on using hashes here.

File details

Details for the file beanmachine-0.1.0.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for beanmachine-0.1.0.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 632b3645ccaf7af719525c05df975db4072da33c7020d6d83a59ce8ad9e8b1fe
MD5 19d75ee2a6c931ed65f1d705fa6ebe06
BLAKE2b-256 5c48663aea96febcfe51d233b72851ff7a01d6686a5404c22601197f6fc37135

See more details on using hashes here.

File details

Details for the file beanmachine-0.1.0.post1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: beanmachine-0.1.0.post1-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 837.6 kB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for beanmachine-0.1.0.post1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b052e68100e8ad8a254c0ac8eafef425638c8f5f7dee9c3f43f1682b92245c23
MD5 ee08af4bc4e26abf7ed2e099b562f53d
BLAKE2b-256 315bf81600d5ff38425b922c30095343d0805e7a2b55bafeec6f918a45c920f6

See more details on using hashes here.

File details

Details for the file beanmachine-0.1.0.post1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: beanmachine-0.1.0.post1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 732.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for beanmachine-0.1.0.post1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4cccbf4f80a628dd1f32cb3cf8fb210fdcef49c78c6d4f8f154a483d25b689d1
MD5 e7bc146470bb01b2650e97e6025fc0a9
BLAKE2b-256 0cf3115460fdeb65665b6893fb4efc6424d5f0e5b340d048fda1a194f7dc7087

See more details on using hashes here.

File details

Details for the file beanmachine-0.1.0.post1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for beanmachine-0.1.0.post1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f3b646e43dac5c43ce3bbe9b6b98434f1f6ab649103c080f5e265e376a56665
MD5 b1ed0cb2b5c118c5c0eba012baf5361b
BLAKE2b-256 26e2c5fc872b68269112b36d8660f1df925b2feaf0cc8160612a21e385303622

See more details on using hashes here.

File details

Details for the file beanmachine-0.1.0.post1-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: beanmachine-0.1.0.post1-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 828.9 kB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for beanmachine-0.1.0.post1-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 03ec9c0586367928bba63ad85969a133996bd6d0dd8f3b2dea3788ec5e996b93
MD5 e5a6823332afbdc5e4b4fbf6760b3c9f
BLAKE2b-256 076cbc9694d17e19cd29431457308f4b2404ca11b62ed23c1cbc0cba040ffcab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page