Skip to main content

A library to analyze and explore protein sequences using BERT models

Project description

berteome

from berteome import prot_bert
Some weights of the model checkpoint at Rostlab/prot_bert were not used when initializing BertForMaskedLM: ['cls.seq_relationship.bias', 'cls.seq_relationship.weight']
- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
from berteome import esm
from berteome import berteomeDF
---------------------------------------------------------------------------

ImportError                               Traceback (most recent call last)

/var/folders/x1/098shbqn0rs8vd5ybvyb0k9h0000gn/T/ipykernel_70195/4107489332.py in <module>
----> 1 from berteome import berteomeDF


ImportError: cannot import name 'berteomeDF' from 'berteome' (/Users/jeffcole/miniconda3/envs/berteome/lib/python3.7/site-packages/berteome-0.1.0-py3.7.egg/berteome/__init__.py)
prot_bert.bertPredictionDF("MENDEL")
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
wt wtIndex A C D E F G H I ... M N P Q R S T V W Y
0 M 1 0.036685 0.011501 0.048229 0.118868 0.024064 0.039190 0.012617 0.066477 ... 0.076580 0.072637 0.024714 0.038660 0.043091 0.070257 0.056526 0.049911 0.007779 0.021692
1 E 2 0.045712 0.015659 0.041913 0.074816 0.037146 0.044317 0.018260 0.073063 ... 0.043572 0.062655 0.025272 0.036905 0.055532 0.064412 0.049945 0.056779 0.012689 0.029887
2 N 3 0.043558 0.009684 0.162566 0.184336 0.033777 0.044654 0.012353 0.052622 ... 0.041478 0.041984 0.019989 0.025511 0.029428 0.048098 0.030299 0.054734 0.007428 0.024920
3 D 4 0.042079 0.013243 0.049744 0.086189 0.039733 0.055907 0.016860 0.073291 ... 0.040078 0.060817 0.032022 0.039686 0.046224 0.062319 0.044898 0.058933 0.010875 0.026594
4 E 5 0.046638 0.018769 0.079816 0.086908 0.050634 0.050462 0.022395 0.074495 ... 0.028960 0.062229 0.023877 0.030532 0.040486 0.065190 0.044934 0.068032 0.012155 0.038031
5 L 6 0.035695 0.008615 0.060928 0.142576 0.019581 0.046287 0.013043 0.060374 ... 0.037424 0.090177 0.019358 0.032733 0.043823 0.045863 0.043224 0.045121 0.009800 0.021241

6 rows × 22 columns

esm.esmPredictionDF("MENDEL")
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
wt wtIndex A C D E F G H I ... M N P Q R S T V W Y
0 M 1 0.033952 0.007039 0.054737 0.063365 0.018590 0.029267 0.010216 0.028865 ... 0.456082 0.029166 0.023344 0.019043 0.023603 0.030170 0.023352 0.033982 0.004791 0.013076
1 E 2 0.058999 0.021031 0.054622 0.072057 0.037186 0.053090 0.025848 0.065879 ... 0.024329 0.059710 0.035728 0.040369 0.052300 0.073618 0.057319 0.062975 0.014029 0.030339
2 N 3 0.055626 0.014060 0.077887 0.122153 0.034727 0.058822 0.019171 0.061401 ... 0.031318 0.044172 0.029668 0.034335 0.052372 0.057394 0.047432 0.069432 0.013282 0.025859
3 D 4 0.044610 0.017627 0.036298 0.071025 0.031629 0.049782 0.023518 0.061833 ... 0.058515 0.043762 0.037227 0.054164 0.055120 0.060091 0.052912 0.070125 0.017567 0.027211
4 E 5 0.045966 0.027927 0.047431 0.057574 0.052450 0.054545 0.030670 0.071293 ... 0.025417 0.051106 0.033450 0.038940 0.055194 0.076423 0.050060 0.063550 0.017663 0.038091
5 L 6 0.048226 0.016231 0.060284 0.100391 0.031534 0.052584 0.023015 0.065281 ... 0.029354 0.063840 0.025546 0.039313 0.062937 0.064147 0.053790 0.060177 0.013714 0.028147

6 rows × 22 columns

This file will become your README and also the index of your documentation.

Install

pip install berteome

How to use

Berteome makes use of the masked language model of BERT to determine predictions for all residues in a protein sequence.

For instance, it uses the prot_bert model from the Rostlab to generate predictions for a given residue in a sequence as follows by putting a [MASK] token in a spaced out seqeunce.

single residue predictions

berteome.unmasker('D L I P T S S K L V V [MASK] D T S L Q V K K A F F A L V T')
[{'sequence': 'D L I P T S S K L V V L D T S L Q V K K A F F A L V T',
  'score': 0.11088439077138901,
  'token': 5,
  'token_str': 'L'},
 {'sequence': 'D L I P T S S K L V V S D T S L Q V K K A F F A L V T',
  'score': 0.0840253233909607,
  'token': 10,
  'token_str': 'S'},
 {'sequence': 'D L I P T S S K L V V V D T S L Q V K K A F F A L V T',
  'score': 0.07328338176012039,
  'token': 8,
  'token_str': 'V'},
 {'sequence': 'D L I P T S S K L V V K D T S L Q V K K A F F A L V T',
  'score': 0.06921844929456711,
  'token': 12,
  'token_str': 'K'},
 {'sequence': 'D L I P T S S K L V V I D T S L Q V K K A F F A L V T',
  'score': 0.06382393091917038,
  'token': 11,
  'token_str': 'I'}]

This gives the top five best predictions for the residues in this sequence, with the following fields:

  • sequence
    • the spaced out full sequence including the predicted residue
  • score
    • how likely this residue is to be behind the mask
  • token
    • the number associated with the residue
  • token_str
    • the actual residue

Something to note is that only one mask can be predicted at a time. So it is not possible to predict more than one mask.

Berteome provides two helper functions to help the user generate single residue predictions with ease. To generate predictions the sequences must be space delimeted and have the [MASK] token. To expedite this berteome provides spacifySeq() which space delimits the sequence. To make the sequence MENDEL space delimited, do the following.

mendel_w_spaces = berteome.spacifySeq("MENDEL")
mendel_w_spaces
'M E N D E L'

Then, the user can put a mask in which ever residue they choose using maskifySeq(), so to put a mask in the previous sequence on the third residue, do the following.

mendel_mask_3 = berteome.maskifySeq(mendel_w_spaces, 3)
mendel_mask_3
'M E N [MASK] E L'

Now a prediction for the masked residue can be acieved by providing it to unmasker()

mendel_mask_3_predictions = berteome.unmasker(mendel_mask_3)
mendel_mask_3_predictions
[{'sequence': 'M E N L E L',
  'score': 0.10907968133687973,
  'token': 5,
  'token_str': 'L'},
 {'sequence': 'M E N K E L',
  'score': 0.09135881811380386,
  'token': 12,
  'token_str': 'K'},
 {'sequence': 'M E N E E L',
  'score': 0.08618851006031036,
  'token': 9,
  'token_str': 'E'},
 {'sequence': 'M E N I E L',
  'score': 0.07329064607620239,
  'token': 11,
  'token_str': 'I'},
 {'sequence': 'M E N S E L',
  'score': 0.06231885030865669,
  'token': 10,
  'token_str': 'S'}]

multiple residue predictions

Berteome also makes it possible to generate all possible predictions for all residues in the sequence using allResiduePredictions()

mendel_all_predictions = berteome.allResiduePredictions("MENDEL")

This provides the raw output, so berteome also has a function to make it a more parseable panda dataframe using residuePredictionScore()

mendel_all_predictionDF =  berteome.residuePredictionScore(mendel_all_predictions, "MENDEL")
mendel_all_predictionDF
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
wt wtIndex wtScore A C D E F G H ... M N P Q R S T V W Y
0 M 1 0.076580 0.036685 0.011501 0.048229 0.118868 0.024064 0.039190 0.012617 ... 0.076580 0.072637 0.024714 0.038660 0.043091 0.070257 0.056526 0.049911 0.007779 0.021692
1 E 2 0.074816 0.045712 0.015659 0.041913 0.074816 0.037146 0.044317 0.018260 ... 0.043572 0.062655 0.025272 0.036905 0.055532 0.064412 0.049945 0.056779 0.012689 0.029887
2 N 3 0.041984 0.043558 0.009684 0.162566 0.184336 0.033777 0.044654 0.012353 ... 0.041478 0.041984 0.019989 0.025511 0.029428 0.048098 0.030299 0.054734 0.007428 0.024920
3 D 4 0.049744 0.042079 0.013243 0.049744 0.086189 0.039733 0.055907 0.016860 ... 0.040078 0.060817 0.032022 0.039686 0.046224 0.062319 0.044898 0.058933 0.010875 0.026594
4 E 5 0.086908 0.046638 0.018769 0.079816 0.086908 0.050634 0.050462 0.022395 ... 0.028960 0.062229 0.023877 0.030532 0.040486 0.065190 0.044934 0.068032 0.012155 0.038031
5 L 6 0.056766 0.035695 0.008615 0.060928 0.142576 0.019581 0.046287 0.013043 ... 0.037424 0.090177 0.019358 0.032733 0.043823 0.045863 0.043224 0.045121 0.009800 0.021241

6 rows × 23 columns

For each residue (wt), the score of the actual residue is provided as well as the score for all 20 amino acids. If needed, the raw output looks like this.

mendel_all_predictions
[[{'sequence': 'E E N D E L',
   'score': 0.11886773258447647,
   'token': 9,
   'token_str': 'E'},
  {'sequence': 'K E N D E L',
   'score': 0.10773412883281708,
   'token': 12,
   'token_str': 'K'},
  {'sequence': 'M E N D E L',
   'score': 0.07657960802316666,
   'token': 21,
   'token_str': 'M'},
  {'sequence': 'N E N D E L',
   'score': 0.07263746112585068,
   'token': 17,
   'token_str': 'N'},
  {'sequence': 'L E N D E L',
   'score': 0.07247161120176315,
   'token': 5,
   'token_str': 'L'},
  {'sequence': 'S E N D E L',
   'score': 0.07025714218616486,
   'token': 10,
   'token_str': 'S'},
  {'sequence': 'I E N D E L',
   'score': 0.06647692620754242,
   'token': 11,
   'token_str': 'I'},
  {'sequence': 'T E N D E L',
   'score': 0.05652552843093872,
   'token': 15,
   'token_str': 'T'},
  {'sequence': 'V E N D E L',
   'score': 0.04991144686937332,
   'token': 8,
   'token_str': 'V'},
  {'sequence': 'D E N D E L',
   'score': 0.04822919890284538,
   'token': 14,
   'token_str': 'D'},
  {'sequence': 'R E N D E L',
   'score': 0.04309074580669403,
   'token': 13,
   'token_str': 'R'},
  {'sequence': 'G E N D E L',
   'score': 0.03918968141078949,
   'token': 7,
   'token_str': 'G'},
  {'sequence': 'Q E N D E L',
   'score': 0.03865953907370567,
   'token': 18,
   'token_str': 'Q'},
  {'sequence': 'A E N D E L',
   'score': 0.03668533265590668,
   'token': 6,
   'token_str': 'A'},
  {'sequence': 'P E N D E L',
   'score': 0.024714037775993347,
   'token': 16,
   'token_str': 'P'},
  {'sequence': 'F E N D E L',
   'score': 0.024063965305685997,
   'token': 19,
   'token_str': 'F'},
  {'sequence': 'Y E N D E L',
   'score': 0.0216918233782053,
   'token': 20,
   'token_str': 'Y'},
  {'sequence': 'H E N D E L',
   'score': 0.012617157772183418,
   'token': 22,
   'token_str': 'H'},
  {'sequence': 'C E N D E L',
   'score': 0.01150050014257431,
   'token': 23,
   'token_str': 'C'},
  {'sequence': 'W E N D E L',
   'score': 0.007778722792863846,
   'token': 24,
   'token_str': 'W'},
  {'sequence': 'X E N D E L',
   'score': 0.0003176695026922971,
   'token': 25,
   'token_str': 'X'},
  {'sequence': 'U E N D E L',
   'score': 2.722620462414227e-10,
   'token': 26,
   'token_str': 'U'},
  {'sequence': 'B E N D E L',
   'score': 2.2993504322776914e-10,
   'token': 27,
   'token_str': 'B'},
  {'sequence': 'E N D E L',
   'score': 2.0518205190445116e-10,
   'token': 3,
   'token_str': '[ S E P ]'},
  {'sequence': 'E N D E L',
   'score': 1.9894096092709646e-10,
   'token': 0,
   'token_str': '[ P A D ]'},
  {'sequence': 'E N D E L',
   'score': 1.9621000657554788e-10,
   'token': 2,
   'token_str': '[ C L S ]'},
  {'sequence': 'Z E N D E L',
   'score': 1.7657629525213991e-10,
   'token': 28,
   'token_str': 'Z'},
  {'sequence': 'O E N D E L',
   'score': 1.6853365925051378e-10,
   'token': 29,
   'token_str': 'O'},
  {'sequence': 'E N D E L',
   'score': 1.441355229614416e-10,
   'token': 1,
   'token_str': '[ U N K ]'},
  {'sequence': 'E N D E L',
   'score': 3.96246785383525e-11,
   'token': 4,
   'token_str': '[ M A S K ]'}],
 [{'sequence': 'M L N D E L',
   'score': 0.10648136585950851,
   'token': 5,
   'token_str': 'L'},
  {'sequence': 'M K N D E L',
   'score': 0.10479484498500824,
   'token': 12,
   'token_str': 'K'},
  {'sequence': 'M E N D E L',
   'score': 0.07481565326452255,
   'token': 9,
   'token_str': 'E'},
  {'sequence': 'M I N D E L',
   'score': 0.07306281477212906,
   'token': 11,
   'token_str': 'I'},
  {'sequence': 'M S N D E L',
   'score': 0.06441245973110199,
   'token': 10,
   'token_str': 'S'},
  {'sequence': 'M N N D E L',
   'score': 0.06265531480312347,
   'token': 17,
   'token_str': 'N'},
  {'sequence': 'M V N D E L',
   'score': 0.05677882954478264,
   'token': 8,
   'token_str': 'V'},
  {'sequence': 'M R N D E L',
   'score': 0.0555323101580143,
   'token': 13,
   'token_str': 'R'},
  {'sequence': 'M T N D E L',
   'score': 0.049945324659347534,
   'token': 15,
   'token_str': 'T'},
  {'sequence': 'M A N D E L',
   'score': 0.045712005347013474,
   'token': 6,
   'token_str': 'A'},
  {'sequence': 'M G N D E L',
   'score': 0.04431714862585068,
   'token': 7,
   'token_str': 'G'},
  {'sequence': 'M M N D E L',
   'score': 0.04357245936989784,
   'token': 21,
   'token_str': 'M'},
  {'sequence': 'M D N D E L',
   'score': 0.041912999004125595,
   'token': 14,
   'token_str': 'D'},
  {'sequence': 'M F N D E L',
   'score': 0.03714616224169731,
   'token': 19,
   'token_str': 'F'},
  {'sequence': 'M Q N D E L',
   'score': 0.036904506385326385,
   'token': 18,
   'token_str': 'Q'},
  {'sequence': 'M Y N D E L',
   'score': 0.029887322336435318,
   'token': 20,
   'token_str': 'Y'},
  {'sequence': 'M P N D E L',
   'score': 0.025271963328123093,
   'token': 16,
   'token_str': 'P'},
  {'sequence': 'M H N D E L',
   'score': 0.018260307610034943,
   'token': 22,
   'token_str': 'H'},
  {'sequence': 'M C N D E L',
   'score': 0.015658656135201454,
   'token': 23,
   'token_str': 'C'},
  {'sequence': 'M W N D E L',
   'score': 0.012689119204878807,
   'token': 24,
   'token_str': 'W'},
  {'sequence': 'M X N D E L',
   'score': 0.00018849420303013176,
   'token': 25,
   'token_str': 'X'},
  {'sequence': 'M U N D E L',
   'score': 2.818865696418982e-10,
   'token': 26,
   'token_str': 'U'},
  {'sequence': 'M N D E L',
   'score': 2.734108772717292e-10,
   'token': 2,
   'token_str': '[ C L S ]'},
  {'sequence': 'M O N D E L',
   'score': 2.455574632520552e-10,
   'token': 29,
   'token_str': 'O'},
  {'sequence': 'M B N D E L',
   'score': 2.428661161069101e-10,
   'token': 27,
   'token_str': 'B'},
  {'sequence': 'M N D E L',
   'score': 2.427744116850761e-10,
   'token': 0,
   'token_str': '[ P A D ]'},
  {'sequence': 'M Z N D E L',
   'score': 2.347084193665694e-10,
   'token': 28,
   'token_str': 'Z'},
  {'sequence': 'M N D E L',
   'score': 2.0238072329092915e-10,
   'token': 1,
   'token_str': '[ U N K ]'},
  {'sequence': 'M N D E L',
   'score': 1.2065035082109432e-10,
   'token': 3,
   'token_str': '[ S E P ]'},
  {'sequence': 'M N D E L',
   'score': 3.644244281342246e-11,
   'token': 4,
   'token_str': '[ M A S K ]'}],
 [{'sequence': 'M E E D E L',
   'score': 0.18433618545532227,
   'token': 9,
   'token_str': 'E'},
  {'sequence': 'M E D D E L',
   'score': 0.16256563365459442,
   'token': 14,
   'token_str': 'D'},
  {'sequence': 'M E L D E L',
   'score': 0.09741301834583282,
   'token': 5,
   'token_str': 'L'},
  {'sequence': 'M E V D E L',
   'score': 0.0547335110604763,
   'token': 8,
   'token_str': 'V'},
  {'sequence': 'M E I D E L',
   'score': 0.05262178182601929,
   'token': 11,
   'token_str': 'I'},
  {'sequence': 'M E S D E L',
   'score': 0.04809831455349922,
   'token': 10,
   'token_str': 'S'},
  {'sequence': 'M E G D E L',
   'score': 0.044654298573732376,
   'token': 7,
   'token_str': 'G'},
  {'sequence': 'M E A D E L',
   'score': 0.04355783760547638,
   'token': 6,
   'token_str': 'A'},
  {'sequence': 'M E N D E L',
   'score': 0.04198392480611801,
   'token': 17,
   'token_str': 'N'},
  {'sequence': 'M E M D E L',
   'score': 0.041477616876363754,
   'token': 21,
   'token_str': 'M'},
  {'sequence': 'M E K D E L',
   'score': 0.03501797094941139,
   'token': 12,
   'token_str': 'K'},
  {'sequence': 'M E F D E L',
   'score': 0.03377687186002731,
   'token': 19,
   'token_str': 'F'},
  {'sequence': 'M E T D E L',
   'score': 0.030298525467514992,
   'token': 15,
   'token_str': 'T'},
  {'sequence': 'M E R D E L',
   'score': 0.029428450390696526,
   'token': 13,
   'token_str': 'R'},
  {'sequence': 'M E Q D E L',
   'score': 0.025511162355542183,
   'token': 18,
   'token_str': 'Q'},
  {'sequence': 'M E Y D E L',
   'score': 0.024920152500271797,
   'token': 20,
   'token_str': 'Y'},
  {'sequence': 'M E P D E L',
   'score': 0.019988832995295525,
   'token': 16,
   'token_str': 'P'},
  {'sequence': 'M E H D E L',
   'score': 0.012353409081697464,
   'token': 22,
   'token_str': 'H'},
  {'sequence': 'M E C D E L',
   'score': 0.009683980606496334,
   'token': 23,
   'token_str': 'C'},
  {'sequence': 'M E W D E L',
   'score': 0.0074284737929701805,
   'token': 24,
   'token_str': 'W'},
  {'sequence': 'M E X D E L',
   'score': 0.00015013833763077855,
   'token': 25,
   'token_str': 'X'},
  {'sequence': 'M E D E L',
   'score': 1.6619389198169188e-10,
   'token': 3,
   'token_str': '[ S E P ]'},
  {'sequence': 'M E B D E L',
   'score': 1.3698038536791302e-10,
   'token': 27,
   'token_str': 'B'},
  {'sequence': 'M E Z D E L',
   'score': 1.168956598185389e-10,
   'token': 28,
   'token_str': 'Z'},
  {'sequence': 'M E D E L',
   'score': 1.0862983429449358e-10,
   'token': 1,
   'token_str': '[ U N K ]'},
  {'sequence': 'M E D E L',
   'score': 1.0585952253672204e-10,
   'token': 0,
   'token_str': '[ P A D ]'},
  {'sequence': 'M E D E L',
   'score': 1.0177149400991681e-10,
   'token': 2,
   'token_str': '[ C L S ]'},
  {'sequence': 'M E O D E L',
   'score': 9.655934385399689e-11,
   'token': 29,
   'token_str': 'O'},
  {'sequence': 'M E U D E L',
   'score': 9.435673770097353e-11,
   'token': 26,
   'token_str': 'U'},
  {'sequence': 'M E D E L',
   'score': 2.4889090788349222e-11,
   'token': 4,
   'token_str': '[ M A S K ]'}],
 [{'sequence': 'M E N L E L',
   'score': 0.10907968133687973,
   'token': 5,
   'token_str': 'L'},
  {'sequence': 'M E N K E L',
   'score': 0.09135881811380386,
   'token': 12,
   'token_str': 'K'},
  {'sequence': 'M E N E E L',
   'score': 0.08618851006031036,
   'token': 9,
   'token_str': 'E'},
  {'sequence': 'M E N I E L',
   'score': 0.07329064607620239,
   'token': 11,
   'token_str': 'I'},
  {'sequence': 'M E N S E L',
   'score': 0.06231885030865669,
   'token': 10,
   'token_str': 'S'},
  {'sequence': 'M E N N E L',
   'score': 0.06081739813089371,
   'token': 17,
   'token_str': 'N'},
  {'sequence': 'M E N V E L',
   'score': 0.05893290042877197,
   'token': 8,
   'token_str': 'V'},
  {'sequence': 'M E N G E L',
   'score': 0.055906955152750015,
   'token': 7,
   'token_str': 'G'},
  {'sequence': 'M E N D E L',
   'score': 0.04974446818232536,
   'token': 14,
   'token_str': 'D'},
  {'sequence': 'M E N R E L',
   'score': 0.046224404126405716,
   'token': 13,
   'token_str': 'R'},
  {'sequence': 'M E N T E L',
   'score': 0.044897545129060745,
   'token': 15,
   'token_str': 'T'},
  {'sequence': 'M E N A E L',
   'score': 0.04207944497466087,
   'token': 6,
   'token_str': 'A'},
  {'sequence': 'M E N M E L',
   'score': 0.040077824145555496,
   'token': 21,
   'token_str': 'M'},
  {'sequence': 'M E N F E L',
   'score': 0.03973270207643509,
   'token': 19,
   'token_str': 'F'},
  {'sequence': 'M E N Q E L',
   'score': 0.039686419069767,
   'token': 18,
   'token_str': 'Q'},
  {'sequence': 'M E N P E L',
   'score': 0.032021839171648026,
   'token': 16,
   'token_str': 'P'},
  {'sequence': 'M E N Y E L',
   'score': 0.026594167575240135,
   'token': 20,
   'token_str': 'Y'},
  {'sequence': 'M E N H E L',
   'score': 0.016859525814652443,
   'token': 22,
   'token_str': 'H'},
  {'sequence': 'M E N C E L',
   'score': 0.01324320025742054,
   'token': 23,
   'token_str': 'C'},
  {'sequence': 'M E N W E L',
   'score': 0.010874584317207336,
   'token': 24,
   'token_str': 'W'},
  {'sequence': 'M E N X E L',
   'score': 7.015161827439442e-05,
   'token': 25,
   'token_str': 'X'},
  {'sequence': 'M E N U E L',
   'score': 1.9529618200397891e-10,
   'token': 26,
   'token_str': 'U'},
  {'sequence': 'M E N E L',
   'score': 1.7881504610350873e-10,
   'token': 2,
   'token_str': '[ C L S ]'},
  {'sequence': 'M E N B E L',
   'score': 1.7396527274282647e-10,
   'token': 27,
   'token_str': 'B'},
  {'sequence': 'M E N Z E L',
   'score': 1.563131013515573e-10,
   'token': 28,
   'token_str': 'Z'},
  {'sequence': 'M E N E L',
   'score': 1.494619983333223e-10,
   'token': 1,
   'token_str': '[ U N K ]'},
  {'sequence': 'M E N O E L',
   'score': 1.4341250409444228e-10,
   'token': 29,
   'token_str': 'O'},
  {'sequence': 'M E N E L',
   'score': 1.4239638634894192e-10,
   'token': 0,
   'token_str': '[ P A D ]'},
  {'sequence': 'M E N E L',
   'score': 1.3189571657079568e-10,
   'token': 3,
   'token_str': '[ S E P ]'},
  {'sequence': 'M E N E L',
   'score': 3.212379667827392e-11,
   'token': 4,
   'token_str': '[ M A S K ]'}],
 [{'sequence': 'M E N D L L',
   'score': 0.0907994955778122,
   'token': 5,
   'token_str': 'L'},
  {'sequence': 'M E N D E L',
   'score': 0.08690842986106873,
   'token': 9,
   'token_str': 'E'},
  {'sequence': 'M E N D D L',
   'score': 0.07981622964143753,
   'token': 14,
   'token_str': 'D'},
  {'sequence': 'M E N D I L',
   'score': 0.07449530810117722,
   'token': 11,
   'token_str': 'I'},
  {'sequence': 'M E N D V L',
   'score': 0.06803234666585922,
   'token': 8,
   'token_str': 'V'},
  {'sequence': 'M E N D S L',
   'score': 0.06518951803445816,
   'token': 10,
   'token_str': 'S'},
  {'sequence': 'M E N D K L',
   'score': 0.06457968801259995,
   'token': 12,
   'token_str': 'K'},
  {'sequence': 'M E N D N L',
   'score': 0.062229011207818985,
   'token': 17,
   'token_str': 'N'},
  {'sequence': 'M E N D F L',
   'score': 0.05063425377011299,
   'token': 19,
   'token_str': 'F'},
  {'sequence': 'M E N D G L',
   'score': 0.05046198144555092,
   'token': 7,
   'token_str': 'G'},
  {'sequence': 'M E N D A L',
   'score': 0.04663773626089096,
   'token': 6,
   'token_str': 'A'},
  {'sequence': 'M E N D T L',
   'score': 0.044934190809726715,
   'token': 15,
   'token_str': 'T'},
  {'sequence': 'M E N D R L',
   'score': 0.0404861643910408,
   'token': 13,
   'token_str': 'R'},
  {'sequence': 'M E N D Y L',
   'score': 0.038031402975320816,
   'token': 20,
   'token_str': 'Y'},
  {'sequence': 'M E N D Q L',
   'score': 0.030531685799360275,
   'token': 18,
   'token_str': 'Q'},
  {'sequence': 'M E N D M L',
   'score': 0.028959861025214195,
   'token': 21,
   'token_str': 'M'},
  {'sequence': 'M E N D P L',
   'score': 0.023876836523413658,
   'token': 16,
   'token_str': 'P'},
  {'sequence': 'M E N D H L',
   'score': 0.022395167499780655,
   'token': 22,
   'token_str': 'H'},
  {'sequence': 'M E N D C L',
   'score': 0.01876864954829216,
   'token': 23,
   'token_str': 'C'},
  {'sequence': 'M E N D W L',
   'score': 0.012154660187661648,
   'token': 24,
   'token_str': 'W'},
  {'sequence': 'M E N D X L',
   'score': 7.737120176898316e-05,
   'token': 25,
   'token_str': 'X'},
  {'sequence': 'M E N D L',
   'score': 2.1059337607098882e-10,
   'token': 2,
   'token_str': '[ C L S ]'},
  {'sequence': 'M E N D U L',
   'score': 1.8998401463132808e-10,
   'token': 26,
   'token_str': 'U'},
  {'sequence': 'M E N D L',
   'score': 1.8773518850601079e-10,
   'token': 0,
   'token_str': '[ P A D ]'},
  {'sequence': 'M E N D B L',
   'score': 1.8348496333420172e-10,
   'token': 27,
   'token_str': 'B'},
  {'sequence': 'M E N D Z L',
   'score': 1.6312270978424692e-10,
   'token': 28,
   'token_str': 'Z'},
  {'sequence': 'M E N D O L',
   'score': 1.620216044662115e-10,
   'token': 29,
   'token_str': 'O'},
  {'sequence': 'M E N D L',
   'score': 1.4441979556689688e-10,
   'token': 1,
   'token_str': '[ U N K ]'},
  {'sequence': 'M E N D L',
   'score': 9.434715508849223e-11,
   'token': 3,
   'token_str': '[ S E P ]'},
  {'sequence': 'M E N D L',
   'score': 2.9468927298381686e-11,
   'token': 4,
   'token_str': '[ M A S K ]'}],
 [{'sequence': 'M E N D E E',
   'score': 0.1425764262676239,
   'token': 9,
   'token_str': 'E'},
  {'sequence': 'M E N D E K',
   'score': 0.10200703889131546,
   'token': 12,
   'token_str': 'K'},
  {'sequence': 'M E N D E N',
   'score': 0.09017709642648697,
   'token': 17,
   'token_str': 'N'},
  {'sequence': 'M E N D E X',
   'score': 0.0653640404343605,
   'token': 25,
   'token_str': 'X'},
  {'sequence': 'M E N D E D',
   'score': 0.060928113758563995,
   'token': 14,
   'token_str': 'D'},
  {'sequence': 'M E N D E I',
   'score': 0.06037352606654167,
   'token': 11,
   'token_str': 'I'},
  {'sequence': 'M E N D E L',
   'score': 0.05676602944731712,
   'token': 5,
   'token_str': 'L'},
  {'sequence': 'M E N D E G',
   'score': 0.04628738388419151,
   'token': 7,
   'token_str': 'G'},
  {'sequence': 'M E N D E S',
   'score': 0.04586312174797058,
   'token': 10,
   'token_str': 'S'},
  {'sequence': 'M E N D E V',
   'score': 0.045120641589164734,
   'token': 8,
   'token_str': 'V'},
  {'sequence': 'M E N D E R',
   'score': 0.04382329806685448,
   'token': 13,
   'token_str': 'R'},
  {'sequence': 'M E N D E T',
   'score': 0.04322368651628494,
   'token': 15,
   'token_str': 'T'},
  {'sequence': 'M E N D E M',
   'score': 0.037424322217702866,
   'token': 21,
   'token_str': 'M'},
  {'sequence': 'M E N D E A',
   'score': 0.03569469600915909,
   'token': 6,
   'token_str': 'A'},
  {'sequence': 'M E N D E Q',
   'score': 0.03273263946175575,
   'token': 18,
   'token_str': 'Q'},
  {'sequence': 'M E N D E Y',
   'score': 0.021241357550024986,
   'token': 20,
   'token_str': 'Y'},
  {'sequence': 'M E N D E F',
   'score': 0.019580725580453873,
   'token': 19,
   'token_str': 'F'},
  {'sequence': 'M E N D E P',
   'score': 0.019357955083251,
   'token': 16,
   'token_str': 'P'},
  {'sequence': 'M E N D E H',
   'score': 0.013043095357716084,
   'token': 22,
   'token_str': 'H'},
  {'sequence': 'M E N D E W',
   'score': 0.009800290688872337,
   'token': 24,
   'token_str': 'W'},
  {'sequence': 'M E N D E C',
   'score': 0.008614533580839634,
   'token': 23,
   'token_str': 'C'},
  {'sequence': 'M E N D E',
   'score': 3.9243933103172424e-10,
   'token': 2,
   'token_str': '[ C L S ]'},
  {'sequence': 'M E N D E O',
   'score': 3.0732788536269595e-10,
   'token': 29,
   'token_str': 'O'},
  {'sequence': 'M E N D E U',
   'score': 2.9936808587649466e-10,
   'token': 26,
   'token_str': 'U'},
  {'sequence': 'M E N D E Z',
   'score': 2.7327584639635916e-10,
   'token': 28,
   'token_str': 'Z'},
  {'sequence': 'M E N D E',
   'score': 2.435800450228953e-10,
   'token': 3,
   'token_str': '[ S E P ]'},
  {'sequence': 'M E N D E',
   'score': 2.3922716585467185e-10,
   'token': 0,
   'token_str': '[ P A D ]'},
  {'sequence': 'M E N D E B',
   'score': 2.3354421174737183e-10,
   'token': 27,
   'token_str': 'B'},
  {'sequence': 'M E N D E',
   'score': 2.0876871065222957e-10,
   'token': 1,
   'token_str': '[ U N K ]'},
  {'sequence': 'M E N D E',
   'score': 3.9169806287375764e-11,
   'token': 4,
   'token_str': '[ M A S K ]'}]]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

berteome-0.1.5.tar.gz (32.4 kB view details)

Uploaded Source

Built Distribution

berteome-0.1.5-py3-none-any.whl (18.0 kB view details)

Uploaded Python 3

File details

Details for the file berteome-0.1.5.tar.gz.

File metadata

  • Download URL: berteome-0.1.5.tar.gz
  • Upload date:
  • Size: 32.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.0.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.8

File hashes

Hashes for berteome-0.1.5.tar.gz
Algorithm Hash digest
SHA256 d6abac667ce0f6a673175faaa6869731f1f6386d3fa92a3c0b3fd8496bc4582f
MD5 f6dbf9dc3ecfd7afef7f7cf1c4565769
BLAKE2b-256 51f9eea464f73cf21eca4034461d297122a50cba0d7079ba92d0cadcf618b23f

See more details on using hashes here.

File details

Details for the file berteome-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: berteome-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 18.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.0.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.8

File hashes

Hashes for berteome-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 686e09c4fccfacfa9e85a44be6623bfad64b10a4654965ebc371508ec06ad69a
MD5 4e167ff4b9ac9f16022aa0871628b811
BLAKE2b-256 8bb770a7accfb96a58b6830b08c07d733bbb14eac2a90885191dfa0687c22c01

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page