A library to analyze and explore protein sequences using BERT models
Project description
berteome
from berteome import prot_bert
Some weights of the model checkpoint at Rostlab/prot_bert were not used when initializing BertForMaskedLM: ['cls.seq_relationship.bias', 'cls.seq_relationship.weight']
- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
from berteome import esm
from berteome import berteomeDF
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
/var/folders/x1/098shbqn0rs8vd5ybvyb0k9h0000gn/T/ipykernel_70195/4107489332.py in <module>
----> 1 from berteome import berteomeDF
ImportError: cannot import name 'berteomeDF' from 'berteome' (/Users/jeffcole/miniconda3/envs/berteome/lib/python3.7/site-packages/berteome-0.1.0-py3.7.egg/berteome/__init__.py)
prot_bert.bertPredictionDF("MENDEL")
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
wt | wtIndex | A | C | D | E | F | G | H | I | ... | M | N | P | Q | R | S | T | V | W | Y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | M | 1 | 0.036685 | 0.011501 | 0.048229 | 0.118868 | 0.024064 | 0.039190 | 0.012617 | 0.066477 | ... | 0.076580 | 0.072637 | 0.024714 | 0.038660 | 0.043091 | 0.070257 | 0.056526 | 0.049911 | 0.007779 | 0.021692 |
1 | E | 2 | 0.045712 | 0.015659 | 0.041913 | 0.074816 | 0.037146 | 0.044317 | 0.018260 | 0.073063 | ... | 0.043572 | 0.062655 | 0.025272 | 0.036905 | 0.055532 | 0.064412 | 0.049945 | 0.056779 | 0.012689 | 0.029887 |
2 | N | 3 | 0.043558 | 0.009684 | 0.162566 | 0.184336 | 0.033777 | 0.044654 | 0.012353 | 0.052622 | ... | 0.041478 | 0.041984 | 0.019989 | 0.025511 | 0.029428 | 0.048098 | 0.030299 | 0.054734 | 0.007428 | 0.024920 |
3 | D | 4 | 0.042079 | 0.013243 | 0.049744 | 0.086189 | 0.039733 | 0.055907 | 0.016860 | 0.073291 | ... | 0.040078 | 0.060817 | 0.032022 | 0.039686 | 0.046224 | 0.062319 | 0.044898 | 0.058933 | 0.010875 | 0.026594 |
4 | E | 5 | 0.046638 | 0.018769 | 0.079816 | 0.086908 | 0.050634 | 0.050462 | 0.022395 | 0.074495 | ... | 0.028960 | 0.062229 | 0.023877 | 0.030532 | 0.040486 | 0.065190 | 0.044934 | 0.068032 | 0.012155 | 0.038031 |
5 | L | 6 | 0.035695 | 0.008615 | 0.060928 | 0.142576 | 0.019581 | 0.046287 | 0.013043 | 0.060374 | ... | 0.037424 | 0.090177 | 0.019358 | 0.032733 | 0.043823 | 0.045863 | 0.043224 | 0.045121 | 0.009800 | 0.021241 |
6 rows × 22 columns
esm.esmPredictionDF("MENDEL")
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
wt | wtIndex | A | C | D | E | F | G | H | I | ... | M | N | P | Q | R | S | T | V | W | Y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | M | 1 | 0.033952 | 0.007039 | 0.054737 | 0.063365 | 0.018590 | 0.029267 | 0.010216 | 0.028865 | ... | 0.456082 | 0.029166 | 0.023344 | 0.019043 | 0.023603 | 0.030170 | 0.023352 | 0.033982 | 0.004791 | 0.013076 |
1 | E | 2 | 0.058999 | 0.021031 | 0.054622 | 0.072057 | 0.037186 | 0.053090 | 0.025848 | 0.065879 | ... | 0.024329 | 0.059710 | 0.035728 | 0.040369 | 0.052300 | 0.073618 | 0.057319 | 0.062975 | 0.014029 | 0.030339 |
2 | N | 3 | 0.055626 | 0.014060 | 0.077887 | 0.122153 | 0.034727 | 0.058822 | 0.019171 | 0.061401 | ... | 0.031318 | 0.044172 | 0.029668 | 0.034335 | 0.052372 | 0.057394 | 0.047432 | 0.069432 | 0.013282 | 0.025859 |
3 | D | 4 | 0.044610 | 0.017627 | 0.036298 | 0.071025 | 0.031629 | 0.049782 | 0.023518 | 0.061833 | ... | 0.058515 | 0.043762 | 0.037227 | 0.054164 | 0.055120 | 0.060091 | 0.052912 | 0.070125 | 0.017567 | 0.027211 |
4 | E | 5 | 0.045966 | 0.027927 | 0.047431 | 0.057574 | 0.052450 | 0.054545 | 0.030670 | 0.071293 | ... | 0.025417 | 0.051106 | 0.033450 | 0.038940 | 0.055194 | 0.076423 | 0.050060 | 0.063550 | 0.017663 | 0.038091 |
5 | L | 6 | 0.048226 | 0.016231 | 0.060284 | 0.100391 | 0.031534 | 0.052584 | 0.023015 | 0.065281 | ... | 0.029354 | 0.063840 | 0.025546 | 0.039313 | 0.062937 | 0.064147 | 0.053790 | 0.060177 | 0.013714 | 0.028147 |
6 rows × 22 columns
This file will become your README and also the index of your documentation.
Install
pip install berteome
How to use
Berteome makes use of the masked language model of BERT to determine predictions for all residues in a protein sequence.
For instance, it uses the prot_bert
model from the Rostlab to generate predictions for a given residue in a sequence as follows by putting a [MASK]
token in a spaced out seqeunce.
single residue predictions
berteome.unmasker('D L I P T S S K L V V [MASK] D T S L Q V K K A F F A L V T')
[{'sequence': 'D L I P T S S K L V V L D T S L Q V K K A F F A L V T',
'score': 0.11088439077138901,
'token': 5,
'token_str': 'L'},
{'sequence': 'D L I P T S S K L V V S D T S L Q V K K A F F A L V T',
'score': 0.0840253233909607,
'token': 10,
'token_str': 'S'},
{'sequence': 'D L I P T S S K L V V V D T S L Q V K K A F F A L V T',
'score': 0.07328338176012039,
'token': 8,
'token_str': 'V'},
{'sequence': 'D L I P T S S K L V V K D T S L Q V K K A F F A L V T',
'score': 0.06921844929456711,
'token': 12,
'token_str': 'K'},
{'sequence': 'D L I P T S S K L V V I D T S L Q V K K A F F A L V T',
'score': 0.06382393091917038,
'token': 11,
'token_str': 'I'}]
This gives the top five best predictions for the residues in this sequence, with the following fields:
- sequence
- the spaced out full sequence including the predicted residue
- score
- how likely this residue is to be behind the mask
- token
- the number associated with the residue
- token_str
- the actual residue
Something to note is that only one mask can be predicted at a time. So it is not possible to predict more than one mask.
Berteome provides two helper functions to help the user generate single residue predictions with ease. To generate predictions the sequences must be space delimeted and have the [MASK]
token. To expedite this berteome provides spacifySeq()
which space delimits the sequence. To make the sequence MENDEL
space delimited, do the following.
mendel_w_spaces = berteome.spacifySeq("MENDEL")
mendel_w_spaces
'M E N D E L'
Then, the user can put a mask in which ever residue they choose using maskifySeq()
, so to put a mask in the previous sequence on the third residue, do the following.
mendel_mask_3 = berteome.maskifySeq(mendel_w_spaces, 3)
mendel_mask_3
'M E N [MASK] E L'
Now a prediction for the masked residue can be acieved by providing it to unmasker()
mendel_mask_3_predictions = berteome.unmasker(mendel_mask_3)
mendel_mask_3_predictions
[{'sequence': 'M E N L E L',
'score': 0.10907968133687973,
'token': 5,
'token_str': 'L'},
{'sequence': 'M E N K E L',
'score': 0.09135881811380386,
'token': 12,
'token_str': 'K'},
{'sequence': 'M E N E E L',
'score': 0.08618851006031036,
'token': 9,
'token_str': 'E'},
{'sequence': 'M E N I E L',
'score': 0.07329064607620239,
'token': 11,
'token_str': 'I'},
{'sequence': 'M E N S E L',
'score': 0.06231885030865669,
'token': 10,
'token_str': 'S'}]
multiple residue predictions
Berteome also makes it possible to generate all possible predictions for all residues in the sequence using allResiduePredictions()
mendel_all_predictions = berteome.allResiduePredictions("MENDEL")
This provides the raw output, so berteome also has a function to make it a more parseable panda dataframe using residuePredictionScore()
mendel_all_predictionDF = berteome.residuePredictionScore(mendel_all_predictions, "MENDEL")
mendel_all_predictionDF
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
wt | wtIndex | wtScore | A | C | D | E | F | G | H | ... | M | N | P | Q | R | S | T | V | W | Y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | M | 1 | 0.076580 | 0.036685 | 0.011501 | 0.048229 | 0.118868 | 0.024064 | 0.039190 | 0.012617 | ... | 0.076580 | 0.072637 | 0.024714 | 0.038660 | 0.043091 | 0.070257 | 0.056526 | 0.049911 | 0.007779 | 0.021692 |
1 | E | 2 | 0.074816 | 0.045712 | 0.015659 | 0.041913 | 0.074816 | 0.037146 | 0.044317 | 0.018260 | ... | 0.043572 | 0.062655 | 0.025272 | 0.036905 | 0.055532 | 0.064412 | 0.049945 | 0.056779 | 0.012689 | 0.029887 |
2 | N | 3 | 0.041984 | 0.043558 | 0.009684 | 0.162566 | 0.184336 | 0.033777 | 0.044654 | 0.012353 | ... | 0.041478 | 0.041984 | 0.019989 | 0.025511 | 0.029428 | 0.048098 | 0.030299 | 0.054734 | 0.007428 | 0.024920 |
3 | D | 4 | 0.049744 | 0.042079 | 0.013243 | 0.049744 | 0.086189 | 0.039733 | 0.055907 | 0.016860 | ... | 0.040078 | 0.060817 | 0.032022 | 0.039686 | 0.046224 | 0.062319 | 0.044898 | 0.058933 | 0.010875 | 0.026594 |
4 | E | 5 | 0.086908 | 0.046638 | 0.018769 | 0.079816 | 0.086908 | 0.050634 | 0.050462 | 0.022395 | ... | 0.028960 | 0.062229 | 0.023877 | 0.030532 | 0.040486 | 0.065190 | 0.044934 | 0.068032 | 0.012155 | 0.038031 |
5 | L | 6 | 0.056766 | 0.035695 | 0.008615 | 0.060928 | 0.142576 | 0.019581 | 0.046287 | 0.013043 | ... | 0.037424 | 0.090177 | 0.019358 | 0.032733 | 0.043823 | 0.045863 | 0.043224 | 0.045121 | 0.009800 | 0.021241 |
6 rows × 23 columns
For each residue (wt), the score of the actual residue is provided as well as the score for all 20 amino acids. If needed, the raw output looks like this.
mendel_all_predictions
[[{'sequence': 'E E N D E L',
'score': 0.11886773258447647,
'token': 9,
'token_str': 'E'},
{'sequence': 'K E N D E L',
'score': 0.10773412883281708,
'token': 12,
'token_str': 'K'},
{'sequence': 'M E N D E L',
'score': 0.07657960802316666,
'token': 21,
'token_str': 'M'},
{'sequence': 'N E N D E L',
'score': 0.07263746112585068,
'token': 17,
'token_str': 'N'},
{'sequence': 'L E N D E L',
'score': 0.07247161120176315,
'token': 5,
'token_str': 'L'},
{'sequence': 'S E N D E L',
'score': 0.07025714218616486,
'token': 10,
'token_str': 'S'},
{'sequence': 'I E N D E L',
'score': 0.06647692620754242,
'token': 11,
'token_str': 'I'},
{'sequence': 'T E N D E L',
'score': 0.05652552843093872,
'token': 15,
'token_str': 'T'},
{'sequence': 'V E N D E L',
'score': 0.04991144686937332,
'token': 8,
'token_str': 'V'},
{'sequence': 'D E N D E L',
'score': 0.04822919890284538,
'token': 14,
'token_str': 'D'},
{'sequence': 'R E N D E L',
'score': 0.04309074580669403,
'token': 13,
'token_str': 'R'},
{'sequence': 'G E N D E L',
'score': 0.03918968141078949,
'token': 7,
'token_str': 'G'},
{'sequence': 'Q E N D E L',
'score': 0.03865953907370567,
'token': 18,
'token_str': 'Q'},
{'sequence': 'A E N D E L',
'score': 0.03668533265590668,
'token': 6,
'token_str': 'A'},
{'sequence': 'P E N D E L',
'score': 0.024714037775993347,
'token': 16,
'token_str': 'P'},
{'sequence': 'F E N D E L',
'score': 0.024063965305685997,
'token': 19,
'token_str': 'F'},
{'sequence': 'Y E N D E L',
'score': 0.0216918233782053,
'token': 20,
'token_str': 'Y'},
{'sequence': 'H E N D E L',
'score': 0.012617157772183418,
'token': 22,
'token_str': 'H'},
{'sequence': 'C E N D E L',
'score': 0.01150050014257431,
'token': 23,
'token_str': 'C'},
{'sequence': 'W E N D E L',
'score': 0.007778722792863846,
'token': 24,
'token_str': 'W'},
{'sequence': 'X E N D E L',
'score': 0.0003176695026922971,
'token': 25,
'token_str': 'X'},
{'sequence': 'U E N D E L',
'score': 2.722620462414227e-10,
'token': 26,
'token_str': 'U'},
{'sequence': 'B E N D E L',
'score': 2.2993504322776914e-10,
'token': 27,
'token_str': 'B'},
{'sequence': 'E N D E L',
'score': 2.0518205190445116e-10,
'token': 3,
'token_str': '[ S E P ]'},
{'sequence': 'E N D E L',
'score': 1.9894096092709646e-10,
'token': 0,
'token_str': '[ P A D ]'},
{'sequence': 'E N D E L',
'score': 1.9621000657554788e-10,
'token': 2,
'token_str': '[ C L S ]'},
{'sequence': 'Z E N D E L',
'score': 1.7657629525213991e-10,
'token': 28,
'token_str': 'Z'},
{'sequence': 'O E N D E L',
'score': 1.6853365925051378e-10,
'token': 29,
'token_str': 'O'},
{'sequence': 'E N D E L',
'score': 1.441355229614416e-10,
'token': 1,
'token_str': '[ U N K ]'},
{'sequence': 'E N D E L',
'score': 3.96246785383525e-11,
'token': 4,
'token_str': '[ M A S K ]'}],
[{'sequence': 'M L N D E L',
'score': 0.10648136585950851,
'token': 5,
'token_str': 'L'},
{'sequence': 'M K N D E L',
'score': 0.10479484498500824,
'token': 12,
'token_str': 'K'},
{'sequence': 'M E N D E L',
'score': 0.07481565326452255,
'token': 9,
'token_str': 'E'},
{'sequence': 'M I N D E L',
'score': 0.07306281477212906,
'token': 11,
'token_str': 'I'},
{'sequence': 'M S N D E L',
'score': 0.06441245973110199,
'token': 10,
'token_str': 'S'},
{'sequence': 'M N N D E L',
'score': 0.06265531480312347,
'token': 17,
'token_str': 'N'},
{'sequence': 'M V N D E L',
'score': 0.05677882954478264,
'token': 8,
'token_str': 'V'},
{'sequence': 'M R N D E L',
'score': 0.0555323101580143,
'token': 13,
'token_str': 'R'},
{'sequence': 'M T N D E L',
'score': 0.049945324659347534,
'token': 15,
'token_str': 'T'},
{'sequence': 'M A N D E L',
'score': 0.045712005347013474,
'token': 6,
'token_str': 'A'},
{'sequence': 'M G N D E L',
'score': 0.04431714862585068,
'token': 7,
'token_str': 'G'},
{'sequence': 'M M N D E L',
'score': 0.04357245936989784,
'token': 21,
'token_str': 'M'},
{'sequence': 'M D N D E L',
'score': 0.041912999004125595,
'token': 14,
'token_str': 'D'},
{'sequence': 'M F N D E L',
'score': 0.03714616224169731,
'token': 19,
'token_str': 'F'},
{'sequence': 'M Q N D E L',
'score': 0.036904506385326385,
'token': 18,
'token_str': 'Q'},
{'sequence': 'M Y N D E L',
'score': 0.029887322336435318,
'token': 20,
'token_str': 'Y'},
{'sequence': 'M P N D E L',
'score': 0.025271963328123093,
'token': 16,
'token_str': 'P'},
{'sequence': 'M H N D E L',
'score': 0.018260307610034943,
'token': 22,
'token_str': 'H'},
{'sequence': 'M C N D E L',
'score': 0.015658656135201454,
'token': 23,
'token_str': 'C'},
{'sequence': 'M W N D E L',
'score': 0.012689119204878807,
'token': 24,
'token_str': 'W'},
{'sequence': 'M X N D E L',
'score': 0.00018849420303013176,
'token': 25,
'token_str': 'X'},
{'sequence': 'M U N D E L',
'score': 2.818865696418982e-10,
'token': 26,
'token_str': 'U'},
{'sequence': 'M N D E L',
'score': 2.734108772717292e-10,
'token': 2,
'token_str': '[ C L S ]'},
{'sequence': 'M O N D E L',
'score': 2.455574632520552e-10,
'token': 29,
'token_str': 'O'},
{'sequence': 'M B N D E L',
'score': 2.428661161069101e-10,
'token': 27,
'token_str': 'B'},
{'sequence': 'M N D E L',
'score': 2.427744116850761e-10,
'token': 0,
'token_str': '[ P A D ]'},
{'sequence': 'M Z N D E L',
'score': 2.347084193665694e-10,
'token': 28,
'token_str': 'Z'},
{'sequence': 'M N D E L',
'score': 2.0238072329092915e-10,
'token': 1,
'token_str': '[ U N K ]'},
{'sequence': 'M N D E L',
'score': 1.2065035082109432e-10,
'token': 3,
'token_str': '[ S E P ]'},
{'sequence': 'M N D E L',
'score': 3.644244281342246e-11,
'token': 4,
'token_str': '[ M A S K ]'}],
[{'sequence': 'M E E D E L',
'score': 0.18433618545532227,
'token': 9,
'token_str': 'E'},
{'sequence': 'M E D D E L',
'score': 0.16256563365459442,
'token': 14,
'token_str': 'D'},
{'sequence': 'M E L D E L',
'score': 0.09741301834583282,
'token': 5,
'token_str': 'L'},
{'sequence': 'M E V D E L',
'score': 0.0547335110604763,
'token': 8,
'token_str': 'V'},
{'sequence': 'M E I D E L',
'score': 0.05262178182601929,
'token': 11,
'token_str': 'I'},
{'sequence': 'M E S D E L',
'score': 0.04809831455349922,
'token': 10,
'token_str': 'S'},
{'sequence': 'M E G D E L',
'score': 0.044654298573732376,
'token': 7,
'token_str': 'G'},
{'sequence': 'M E A D E L',
'score': 0.04355783760547638,
'token': 6,
'token_str': 'A'},
{'sequence': 'M E N D E L',
'score': 0.04198392480611801,
'token': 17,
'token_str': 'N'},
{'sequence': 'M E M D E L',
'score': 0.041477616876363754,
'token': 21,
'token_str': 'M'},
{'sequence': 'M E K D E L',
'score': 0.03501797094941139,
'token': 12,
'token_str': 'K'},
{'sequence': 'M E F D E L',
'score': 0.03377687186002731,
'token': 19,
'token_str': 'F'},
{'sequence': 'M E T D E L',
'score': 0.030298525467514992,
'token': 15,
'token_str': 'T'},
{'sequence': 'M E R D E L',
'score': 0.029428450390696526,
'token': 13,
'token_str': 'R'},
{'sequence': 'M E Q D E L',
'score': 0.025511162355542183,
'token': 18,
'token_str': 'Q'},
{'sequence': 'M E Y D E L',
'score': 0.024920152500271797,
'token': 20,
'token_str': 'Y'},
{'sequence': 'M E P D E L',
'score': 0.019988832995295525,
'token': 16,
'token_str': 'P'},
{'sequence': 'M E H D E L',
'score': 0.012353409081697464,
'token': 22,
'token_str': 'H'},
{'sequence': 'M E C D E L',
'score': 0.009683980606496334,
'token': 23,
'token_str': 'C'},
{'sequence': 'M E W D E L',
'score': 0.0074284737929701805,
'token': 24,
'token_str': 'W'},
{'sequence': 'M E X D E L',
'score': 0.00015013833763077855,
'token': 25,
'token_str': 'X'},
{'sequence': 'M E D E L',
'score': 1.6619389198169188e-10,
'token': 3,
'token_str': '[ S E P ]'},
{'sequence': 'M E B D E L',
'score': 1.3698038536791302e-10,
'token': 27,
'token_str': 'B'},
{'sequence': 'M E Z D E L',
'score': 1.168956598185389e-10,
'token': 28,
'token_str': 'Z'},
{'sequence': 'M E D E L',
'score': 1.0862983429449358e-10,
'token': 1,
'token_str': '[ U N K ]'},
{'sequence': 'M E D E L',
'score': 1.0585952253672204e-10,
'token': 0,
'token_str': '[ P A D ]'},
{'sequence': 'M E D E L',
'score': 1.0177149400991681e-10,
'token': 2,
'token_str': '[ C L S ]'},
{'sequence': 'M E O D E L',
'score': 9.655934385399689e-11,
'token': 29,
'token_str': 'O'},
{'sequence': 'M E U D E L',
'score': 9.435673770097353e-11,
'token': 26,
'token_str': 'U'},
{'sequence': 'M E D E L',
'score': 2.4889090788349222e-11,
'token': 4,
'token_str': '[ M A S K ]'}],
[{'sequence': 'M E N L E L',
'score': 0.10907968133687973,
'token': 5,
'token_str': 'L'},
{'sequence': 'M E N K E L',
'score': 0.09135881811380386,
'token': 12,
'token_str': 'K'},
{'sequence': 'M E N E E L',
'score': 0.08618851006031036,
'token': 9,
'token_str': 'E'},
{'sequence': 'M E N I E L',
'score': 0.07329064607620239,
'token': 11,
'token_str': 'I'},
{'sequence': 'M E N S E L',
'score': 0.06231885030865669,
'token': 10,
'token_str': 'S'},
{'sequence': 'M E N N E L',
'score': 0.06081739813089371,
'token': 17,
'token_str': 'N'},
{'sequence': 'M E N V E L',
'score': 0.05893290042877197,
'token': 8,
'token_str': 'V'},
{'sequence': 'M E N G E L',
'score': 0.055906955152750015,
'token': 7,
'token_str': 'G'},
{'sequence': 'M E N D E L',
'score': 0.04974446818232536,
'token': 14,
'token_str': 'D'},
{'sequence': 'M E N R E L',
'score': 0.046224404126405716,
'token': 13,
'token_str': 'R'},
{'sequence': 'M E N T E L',
'score': 0.044897545129060745,
'token': 15,
'token_str': 'T'},
{'sequence': 'M E N A E L',
'score': 0.04207944497466087,
'token': 6,
'token_str': 'A'},
{'sequence': 'M E N M E L',
'score': 0.040077824145555496,
'token': 21,
'token_str': 'M'},
{'sequence': 'M E N F E L',
'score': 0.03973270207643509,
'token': 19,
'token_str': 'F'},
{'sequence': 'M E N Q E L',
'score': 0.039686419069767,
'token': 18,
'token_str': 'Q'},
{'sequence': 'M E N P E L',
'score': 0.032021839171648026,
'token': 16,
'token_str': 'P'},
{'sequence': 'M E N Y E L',
'score': 0.026594167575240135,
'token': 20,
'token_str': 'Y'},
{'sequence': 'M E N H E L',
'score': 0.016859525814652443,
'token': 22,
'token_str': 'H'},
{'sequence': 'M E N C E L',
'score': 0.01324320025742054,
'token': 23,
'token_str': 'C'},
{'sequence': 'M E N W E L',
'score': 0.010874584317207336,
'token': 24,
'token_str': 'W'},
{'sequence': 'M E N X E L',
'score': 7.015161827439442e-05,
'token': 25,
'token_str': 'X'},
{'sequence': 'M E N U E L',
'score': 1.9529618200397891e-10,
'token': 26,
'token_str': 'U'},
{'sequence': 'M E N E L',
'score': 1.7881504610350873e-10,
'token': 2,
'token_str': '[ C L S ]'},
{'sequence': 'M E N B E L',
'score': 1.7396527274282647e-10,
'token': 27,
'token_str': 'B'},
{'sequence': 'M E N Z E L',
'score': 1.563131013515573e-10,
'token': 28,
'token_str': 'Z'},
{'sequence': 'M E N E L',
'score': 1.494619983333223e-10,
'token': 1,
'token_str': '[ U N K ]'},
{'sequence': 'M E N O E L',
'score': 1.4341250409444228e-10,
'token': 29,
'token_str': 'O'},
{'sequence': 'M E N E L',
'score': 1.4239638634894192e-10,
'token': 0,
'token_str': '[ P A D ]'},
{'sequence': 'M E N E L',
'score': 1.3189571657079568e-10,
'token': 3,
'token_str': '[ S E P ]'},
{'sequence': 'M E N E L',
'score': 3.212379667827392e-11,
'token': 4,
'token_str': '[ M A S K ]'}],
[{'sequence': 'M E N D L L',
'score': 0.0907994955778122,
'token': 5,
'token_str': 'L'},
{'sequence': 'M E N D E L',
'score': 0.08690842986106873,
'token': 9,
'token_str': 'E'},
{'sequence': 'M E N D D L',
'score': 0.07981622964143753,
'token': 14,
'token_str': 'D'},
{'sequence': 'M E N D I L',
'score': 0.07449530810117722,
'token': 11,
'token_str': 'I'},
{'sequence': 'M E N D V L',
'score': 0.06803234666585922,
'token': 8,
'token_str': 'V'},
{'sequence': 'M E N D S L',
'score': 0.06518951803445816,
'token': 10,
'token_str': 'S'},
{'sequence': 'M E N D K L',
'score': 0.06457968801259995,
'token': 12,
'token_str': 'K'},
{'sequence': 'M E N D N L',
'score': 0.062229011207818985,
'token': 17,
'token_str': 'N'},
{'sequence': 'M E N D F L',
'score': 0.05063425377011299,
'token': 19,
'token_str': 'F'},
{'sequence': 'M E N D G L',
'score': 0.05046198144555092,
'token': 7,
'token_str': 'G'},
{'sequence': 'M E N D A L',
'score': 0.04663773626089096,
'token': 6,
'token_str': 'A'},
{'sequence': 'M E N D T L',
'score': 0.044934190809726715,
'token': 15,
'token_str': 'T'},
{'sequence': 'M E N D R L',
'score': 0.0404861643910408,
'token': 13,
'token_str': 'R'},
{'sequence': 'M E N D Y L',
'score': 0.038031402975320816,
'token': 20,
'token_str': 'Y'},
{'sequence': 'M E N D Q L',
'score': 0.030531685799360275,
'token': 18,
'token_str': 'Q'},
{'sequence': 'M E N D M L',
'score': 0.028959861025214195,
'token': 21,
'token_str': 'M'},
{'sequence': 'M E N D P L',
'score': 0.023876836523413658,
'token': 16,
'token_str': 'P'},
{'sequence': 'M E N D H L',
'score': 0.022395167499780655,
'token': 22,
'token_str': 'H'},
{'sequence': 'M E N D C L',
'score': 0.01876864954829216,
'token': 23,
'token_str': 'C'},
{'sequence': 'M E N D W L',
'score': 0.012154660187661648,
'token': 24,
'token_str': 'W'},
{'sequence': 'M E N D X L',
'score': 7.737120176898316e-05,
'token': 25,
'token_str': 'X'},
{'sequence': 'M E N D L',
'score': 2.1059337607098882e-10,
'token': 2,
'token_str': '[ C L S ]'},
{'sequence': 'M E N D U L',
'score': 1.8998401463132808e-10,
'token': 26,
'token_str': 'U'},
{'sequence': 'M E N D L',
'score': 1.8773518850601079e-10,
'token': 0,
'token_str': '[ P A D ]'},
{'sequence': 'M E N D B L',
'score': 1.8348496333420172e-10,
'token': 27,
'token_str': 'B'},
{'sequence': 'M E N D Z L',
'score': 1.6312270978424692e-10,
'token': 28,
'token_str': 'Z'},
{'sequence': 'M E N D O L',
'score': 1.620216044662115e-10,
'token': 29,
'token_str': 'O'},
{'sequence': 'M E N D L',
'score': 1.4441979556689688e-10,
'token': 1,
'token_str': '[ U N K ]'},
{'sequence': 'M E N D L',
'score': 9.434715508849223e-11,
'token': 3,
'token_str': '[ S E P ]'},
{'sequence': 'M E N D L',
'score': 2.9468927298381686e-11,
'token': 4,
'token_str': '[ M A S K ]'}],
[{'sequence': 'M E N D E E',
'score': 0.1425764262676239,
'token': 9,
'token_str': 'E'},
{'sequence': 'M E N D E K',
'score': 0.10200703889131546,
'token': 12,
'token_str': 'K'},
{'sequence': 'M E N D E N',
'score': 0.09017709642648697,
'token': 17,
'token_str': 'N'},
{'sequence': 'M E N D E X',
'score': 0.0653640404343605,
'token': 25,
'token_str': 'X'},
{'sequence': 'M E N D E D',
'score': 0.060928113758563995,
'token': 14,
'token_str': 'D'},
{'sequence': 'M E N D E I',
'score': 0.06037352606654167,
'token': 11,
'token_str': 'I'},
{'sequence': 'M E N D E L',
'score': 0.05676602944731712,
'token': 5,
'token_str': 'L'},
{'sequence': 'M E N D E G',
'score': 0.04628738388419151,
'token': 7,
'token_str': 'G'},
{'sequence': 'M E N D E S',
'score': 0.04586312174797058,
'token': 10,
'token_str': 'S'},
{'sequence': 'M E N D E V',
'score': 0.045120641589164734,
'token': 8,
'token_str': 'V'},
{'sequence': 'M E N D E R',
'score': 0.04382329806685448,
'token': 13,
'token_str': 'R'},
{'sequence': 'M E N D E T',
'score': 0.04322368651628494,
'token': 15,
'token_str': 'T'},
{'sequence': 'M E N D E M',
'score': 0.037424322217702866,
'token': 21,
'token_str': 'M'},
{'sequence': 'M E N D E A',
'score': 0.03569469600915909,
'token': 6,
'token_str': 'A'},
{'sequence': 'M E N D E Q',
'score': 0.03273263946175575,
'token': 18,
'token_str': 'Q'},
{'sequence': 'M E N D E Y',
'score': 0.021241357550024986,
'token': 20,
'token_str': 'Y'},
{'sequence': 'M E N D E F',
'score': 0.019580725580453873,
'token': 19,
'token_str': 'F'},
{'sequence': 'M E N D E P',
'score': 0.019357955083251,
'token': 16,
'token_str': 'P'},
{'sequence': 'M E N D E H',
'score': 0.013043095357716084,
'token': 22,
'token_str': 'H'},
{'sequence': 'M E N D E W',
'score': 0.009800290688872337,
'token': 24,
'token_str': 'W'},
{'sequence': 'M E N D E C',
'score': 0.008614533580839634,
'token': 23,
'token_str': 'C'},
{'sequence': 'M E N D E',
'score': 3.9243933103172424e-10,
'token': 2,
'token_str': '[ C L S ]'},
{'sequence': 'M E N D E O',
'score': 3.0732788536269595e-10,
'token': 29,
'token_str': 'O'},
{'sequence': 'M E N D E U',
'score': 2.9936808587649466e-10,
'token': 26,
'token_str': 'U'},
{'sequence': 'M E N D E Z',
'score': 2.7327584639635916e-10,
'token': 28,
'token_str': 'Z'},
{'sequence': 'M E N D E',
'score': 2.435800450228953e-10,
'token': 3,
'token_str': '[ S E P ]'},
{'sequence': 'M E N D E',
'score': 2.3922716585467185e-10,
'token': 0,
'token_str': '[ P A D ]'},
{'sequence': 'M E N D E B',
'score': 2.3354421174737183e-10,
'token': 27,
'token_str': 'B'},
{'sequence': 'M E N D E',
'score': 2.0876871065222957e-10,
'token': 1,
'token_str': '[ U N K ]'},
{'sequence': 'M E N D E',
'score': 3.9169806287375764e-11,
'token': 4,
'token_str': '[ M A S K ]'}]]
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file berteome-0.1.5.tar.gz
.
File metadata
- Download URL: berteome-0.1.5.tar.gz
- Upload date:
- Size: 32.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.0.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d6abac667ce0f6a673175faaa6869731f1f6386d3fa92a3c0b3fd8496bc4582f |
|
MD5 | f6dbf9dc3ecfd7afef7f7cf1c4565769 |
|
BLAKE2b-256 | 51f9eea464f73cf21eca4034461d297122a50cba0d7079ba92d0cadcf618b23f |
File details
Details for the file berteome-0.1.5-py3-none-any.whl
.
File metadata
- Download URL: berteome-0.1.5-py3-none-any.whl
- Upload date:
- Size: 18.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.0.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 686e09c4fccfacfa9e85a44be6623bfad64b10a4654965ebc371508ec06ad69a |
|
MD5 | 4e167ff4b9ac9f16022aa0871628b811 |
|
BLAKE2b-256 | 8bb770a7accfb96a58b6830b08c07d733bbb14eac2a90885191dfa0687c22c01 |