A video processing tool for visual data collection, end-to-end preprocessing, ready-to-go for model training.
Project description
# Dataset-builder ![Build](https://img.shields.io/badge/Design-passing-Green) A video processing tool for visual data collection, end-to-end preprocessing, ready-to-go for model training.
### Input A video or a set of videos. Currently supports `.mp4` only.
### Features
Audio extraction :v: - `python src/app.py --fileName 001-01.mp4 --extractAudio yes`
Audio detection :v: - `python src/app.py --fileName 001-01.wav --detectAudio yes` - To show plot: `python src/app.py --fileName 001-01.wav --detectAudio yes --plot true`
Audio-video split :v: - To separate audio: `python src/app.py --fileName 001-01.wav --separateAudio yes` - To separate video: `python src/app.py --fileName 001-01.mp4 --separateVideo yes`
Audio-video merge :v: - `python src/app.py --fileName 001-01.mp4 --mergeAudioVideo yes`
Video player :v: - Play the separated videos to see all is good: `python src/app.py --fileName 001-01.mp4 --playAll`
Video compression :v: - `python src/app.py --fileName 001-01.mp4 --compressBySize 2`
Face detection and region extraction :v: - `python src/app.py --fileName 001-01.mp4 --detectLip yes --speaker 001`
Video data processing utilities :v:
### How to use it?
Clone the repository: `https://github.com/MasumBhuiyan/visual-data-manager.git`
Open terminal and <b>cd</b> to the directory where <b>requirements.txt</b> is located.
Create, activate, and install packages in a virtual environment - `pip install virtualenv` - `virtualenv env` - `source env/bin/activate` - `pip install -r requirements.txt`
To split a video run: `will be updated`
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file bhuiyans-dataset-builder-0.0.1.tar.gz
.
File metadata
- Download URL: bhuiyans-dataset-builder-0.0.1.tar.gz
- Upload date:
- Size: 19.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: Python-urllib/3.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9b498d8fb6f3e50a3fbf093f485593fe7776bc56b7cc6fa7d1d2d8221093611f |
|
MD5 | fe13aae6b84be13bbc65d5723cf5b17c |
|
BLAKE2b-256 | 78bd2dbaf6aed3e7abb3752ccc194d9e6b1c1659ff08e3e022b76682c2bf52b6 |