Binonymizer is a tool in Python that aims at tagging personal data in a parallel corpus.
Project description
binonymizer
Binonymizer is a tool in Python that aims at tagging personal data1 in a parallel corpus.
For example, for a input like:
URL1 URL2 My name is Marta and my email is fake@email.com Mi nombre es Marta y mi email es fake@email.com
Binonymizer's output will be:
URL1 URL2 My name is <entity class="PER">Marta</entity> and my email is <entity class="EMAIL">fake@email.com</entity> Mi nombre es <entity class="PER">Marta</entity> y mi email es <entity class="EMAIL">fake@email.com</entity>
Detectable entity tipes
Currently, the Binonymizer is able to detect and tag the following types of entities:
- PER: person names
- ORG: organism and company names
- EMAIL: email addresses
- PHONE: phone numbers
- ADDRESS: addresses
- ID: personal card IDs (such as spanish DNIs)
- MISC: other personal data, or when the type it's uncertain
- OTHER: other
Installation & Requirements
Binonymizer works with Python 3.6.
Requirements can be installed by using pip
:
python3.6 -m pip install -r requirements.txt
Language-dependant packages and models are automatically downloaded and installed on runtime, if needed.
Usage
Binonymizer can be run with:
binonymizer.py [-h] --format {tmx,cols} [--tmp_dir TMP_DIR]
[-b BLOCK_SIZE] [-p PROCESSES] [-q] [--debug]
[--logfile LOGFILE] [-v]
input [output] srclang trglang
Parameters
- positional arguments:
- input: File to be anonymized (See format below)
- output: File with anonymization annotations (default: standard output)
- srclang: Source language code of the input
- trglang: Target language code of the input
- optional arguments:
- -h, --help: show this help message and exit
- Mandatory:
- --format {tmx,cols}: Input file format. Values: cols, tmx ("cols" format: URL1 URL2 SOURCE_SENTENCE TARGET_SENTENCE [extra columns] tab-separated)
- Optional:
- --tmp_dir TMP_DIR: Temporary directory where creating the temporary files of this program (default: default system temp dir, defined by the environment variable TMPDIR in Unix)
- -b BLOCK_SIZE, --block_size BLOCK_SIZE: Sentence pairs per block (default: 10000)
- -p PROCESSES, --processes PROCESSES: Number of processes to use (default: all CPUs minus one)
- Logging:
- -q, --quiet: Silent logging mode (default: False)
- --debug: Debug logging mode (default: False)
- --logfile LOGFILE: Store log to a file (default: standard error output)
- -v, --version: show version of this script and exit
Example
python3.6 binonymizer.py corpus.en-es.raw corpus.en-es.anon en es --format cols --tmp_dir /tmpdir -b50000 -p31
This will read the corpus "corpus.en-es.raw", which is in a column-based format, extracting personal data and writing the tagged output in "corpus.en-es.anon". Binonymizer will run in blocks of 50000 sentences, using 31 cores, and writing temporary files in /tmpdir
Lite version
Although binonymizer
makes use of parallelization by distributing workload to the available cores, some users might prefer to implement their own parallelization strategies. For that reason, a single-thread version of the scripts is provided: binonymizer_lite.py
. The usage is exactly the same as for the full version, but omitting the blocksize (-b) and processes (-p) parameter.
TO DO
- Pip installable
- Fully support TMX input/output
- Address recognition
- GPU support
- Automate Prompsit-python-bindings submodule ( git submodule update --remote , python3.6 setup.py install)
1: See EC definition of "personal information": https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-personal-data_en
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file binonymizer-0.1.tar.gz
.
File metadata
- Download URL: binonymizer-0.1.tar.gz
- Upload date:
- Size: 14.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9598dba282d18cd7d6bd5fdf34e687cca3e28c6493c23b25bc81287f03dfd40a |
|
MD5 | df20034ded2df41f0ab21e937a43bd85 |
|
BLAKE2b-256 | dec527af046286fbc286675bc4a421ee60e9a715b9ce0fbffc39afed2a059b25 |
File details
Details for the file binonymizer-0.1-py3-none-any.whl
.
File metadata
- Download URL: binonymizer-0.1-py3-none-any.whl
- Upload date:
- Size: 33.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 64245fdb79c3a64e8441a683f200a2678606b1b319c39719363c43cdf65e33f0 |
|
MD5 | 0813dad3dca4a89417db8e88b8e16e5d |
|
BLAKE2b-256 | 6cc75ce95de6af4e872c1eb44fb7882661d76d31c02b22d1de921fce587c2e9c |