Skip to main content

A package for working with Bioinformatics data with SQL and Arrow

Project description

biobear

biobear is a Python library designed for reading and searching bioinformatic file formats, using Rust as its backend and producing Arrow Batch Readers and other downstream formats (like polars or duckdb).

The python package has minimal dependencies and only requires Polars. Biobear can be used to read various bioinformatic file formats, including FASTA, FASTQ, VCF, BAM, and GFF locally or from an object store like S3. It can also query some indexed file formats locally like VCF and BAM.

Release

Please see the documentation for information on how to get started using biobear.

Quickstart

To install biobear, run:

pip install biobear
pip install polars # needed for `to_polars` method

Create a file with some GFF data:

echo "chr1\t.\tgene\t1\t100\t.\t+\t.\tgene_id=1;gene_name=foo" > test.gff
echo "chr1\t.\tgene\t200\t300\t.\t+\t.\tgene_id=2;gene_name=bar" >> test.gff

Then you can use biobear to read a file:

import biobear as bb

session = bb.connect()
df = session.sql("""
    SELECT * FROM gff_scan('test.gff')
""").to_polars()

print(df)

This will print:

┌─────────┬────────┬──────┬───────┬───┬───────┬────────┬───────┬───────────────────────────────────┐
│ seqname ┆ source ┆ type ┆ start ┆ … ┆ score ┆ strand ┆ phase ┆ attributes                        │
│ ---     ┆ ---    ┆ ---  ┆ ---   ┆   ┆ ---   ┆ ---    ┆ ---   ┆ ---                               │
│ str     ┆ str    ┆ str  ┆ i64   ┆   ┆ f32   ┆ str    ┆ str   ┆ list[struct[2]]                   │
╞═════════╪════════╪══════╪═══════╪═══╪═══════╪════════╪═══════╪═══════════════════════════════════╡
│ chr1    ┆ .      ┆ gene ┆ 1     ┆ … ┆ null  ┆ +      ┆ null  ┆ [{"gene_id","1"}, {"gene_name","… │
│ chr1    ┆ .      ┆ gene ┆ 200   ┆ … ┆ null  ┆ +      ┆ null  ┆ [{"gene_id","2"}, {"gene_name","… │
└─────────┴────────┴──────┴───────┴───┴───────┴────────┴───────┴───────────────────────────────────┘

Using a Session w/ Exon

BioBear exposes a session object that can be used with exon to work with files directly in SQL, then eventually convert them to a DataFrame if needed.

See the BioBear Docs for more information, but in short, you can use the session like this:

import biobear as bb

session = bb.connect()

session.sql("""
CREATE EXTERNAL TABLE gene_annotations_s3 STORED AS GFF LOCATION 's3://BUCKET/TenflaDSM28944/IMG_Data/Ga0451106_prodigal.gff'
""")

df = session.sql("""
    SELECT * FROM gene_annotations_s3 WHERE score > 50
""").to_polars()
df.head()
# shape: (5, 9)
# ┌──────────────┬─────────────────┬──────┬───────┬───┬────────────┬────────┬───────┬───────────────────────────────────┐
# │ seqname      ┆ source          ┆ type ┆ start ┆ … ┆ score      ┆ strand ┆ phase ┆ attributes                        │
# │ ---          ┆ ---             ┆ ---  ┆ ---   ┆   ┆ ---        ┆ ---    ┆ ---   ┆ ---                               │
# │ str          ┆ str             ┆ str  ┆ i64   ┆   ┆ f32        ┆ str    ┆ str   ┆ list[struct[2]]                   │
# ╞══════════════╪═════════════════╪══════╪═══════╪═══╪════════════╪════════╪═══════╪═══════════════════════════════════╡
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 2     ┆ … ┆ 54.5       ┆ -      ┆ 0     ┆ [{"ID",["Ga0451106_01_2_238"]}, … │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 228   ┆ … ┆ 114.0      ┆ -      ┆ 0     ┆ [{"ID",["Ga0451106_01_228_941"]}… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 1097  ┆ … ┆ 224.399994 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_1097_2257"… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 2261  ┆ … ┆ 237.699997 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_2261_3787"… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 3784  ┆ … ┆ 114.400002 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_3784_4548"… │
# └──────────────┴─────────────────┴──────┴───────┴───┴────────────┴────────┴───────┴───────────────────────────────────┘

Ecosystem

BioBear aims to make it simple to move easily to and from different prominent data tools in Python. Generally, if the tool can read Arrow, it can read BioBear's output. To call out a few examples here:

Polars

The session results and Reader objects can be converted to a Polars DataFrame.

import biobear as bb

session = bb.connect()

df = session.sql("""
    SELECT * FROM gff_scan('test.gff')
""").to_polars()

Known Issues

For GenBank and mzML, the naive SELECT * will cause an error, because Polars doesn't support all Arrow types -- Map being the specific offender here. In these cases, select the fields from the map individually. Alternatively, you can first convert the table to a Pandas DataFrame.

DuckDB

BioBear can also be used to read files into a duckdb database.

import biobear as bb
import duckdb

session = bb.connect()

session.sql("""
    CREATE EXTERNAL TABLE gene_annotations STORED AS GFF LOCATION 'python/tests/data/test.gff'
""")

result = session.sql("""
    SELECT * FROM gene_annotations
""")

gff_table_arrow_table = result.to_arrow()

duckdb_conn = duckdb.connect()

result = duckdb_conn.execute('SELECT * FROM gff_table_arrow_table').fetchall()
print(result)

Performance

Please see the exon's performance metrics for thorough benchmarks, but in short, biobear is generally faster than other Python libraries for reading bioinformatic file formats.

For example, here's quick benchmarks for reading one FASTA file with 1 million records and reading 5 FASTA files each with 1 million records for the local file system on an M1 MacBook Pro:

Library 1 file (s) 5 files (s)
BioBear 4.605 s ± 0.166 s 6.420 s ± 0.113 s
BioPython 6.654 s ± 0.003 s 34.254 s ± 0.053 s

The larger difference multiple files is due to biobear's ability to read multiple files in parallel.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

biobear-0.18.0.tar.gz (473.7 kB view details)

Uploaded Source

Built Distributions

biobear-0.18.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl (18.9 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.18.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.18.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl (18.9 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.18.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.18.0-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl (18.9 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.18.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.18.0-cp312-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

biobear-0.18.0-cp312-cp312-manylinux_2_28_aarch64.whl (18.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

biobear-0.18.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

biobear-0.18.0-cp312-cp312-macosx_11_0_arm64.whl (17.9 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

biobear-0.18.0-cp312-cp312-macosx_10_12_x86_64.whl (19.2 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

biobear-0.18.0-cp311-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

biobear-0.18.0-cp311-cp311-manylinux_2_28_aarch64.whl (18.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

biobear-0.18.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

biobear-0.18.0-cp311-cp311-macosx_11_0_arm64.whl (17.9 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

biobear-0.18.0-cp311-cp311-macosx_10_12_x86_64.whl (19.2 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

biobear-0.18.0-cp310-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

biobear-0.18.0-cp310-cp310-manylinux_2_28_aarch64.whl (18.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

biobear-0.18.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

biobear-0.18.0-cp39-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

biobear-0.18.0-cp39-cp39-manylinux_2_28_aarch64.whl (18.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

biobear-0.18.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

biobear-0.18.0-cp39-cp39-macosx_11_0_arm64.whl (17.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

biobear-0.18.0-cp39-cp39-macosx_10_12_x86_64.whl (19.2 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

biobear-0.18.0-cp38-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

biobear-0.18.0-cp38-cp38-manylinux_2_28_aarch64.whl (18.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

biobear-0.18.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file biobear-0.18.0.tar.gz.

File metadata

  • Download URL: biobear-0.18.0.tar.gz
  • Upload date:
  • Size: 473.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for biobear-0.18.0.tar.gz
Algorithm Hash digest
SHA256 b98bfa6f12e92b6f95ba45df39a5fd949850e2dcbce82aa64fc2c81dfe82dee4
MD5 62f7af2b15fbf6d3bd74dc5f1fbabca7
BLAKE2b-256 2cf917d1de0ec333d64f97e2250adc09df384adea8c7575967073892f9af5404

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 92a71d366c017dba893b838a6d69959f08194cab4f092206925c54ee4742ec7b
MD5 6eeee24b344b28f72ad09f3c49669fb2
BLAKE2b-256 8c8e9c5287491237191e2edd8d14afd3de7a03ccf5404dbfa5f1119b64dbd158

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c7ed8548bde8f5af954c61505f81b199712728eea8fd7292a69c7f0bd3337cc
MD5 070216dd0cd6522a0f6823bbfd526282
BLAKE2b-256 8432a8232d7d1db7b269ead88b893fa4510fbe58c4444f841a3d4327cd839e2f

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 20bfa56758fc8e4ceb80970347090557ceee2efb228befae3a762743961abc9b
MD5 58761367efd182e801a6129c6ab2e10a
BLAKE2b-256 71e90a5e60e97785533b4d74c010b9a0e8514ebdf1fc03ff3909878fb0b80963

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a0e4c8172d4d985730e59c38f4e0e78d8ab369365e286ffd35a5d67cc16478d1
MD5 fc4124b6c3192de7441fa2c4fdb2bbc7
BLAKE2b-256 41b98cea917fb95b490267b68909b3a8044c14448aa6eaad516744422825de75

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1c5c09170c87ea2ec68afd82bc7759e390fbffe74c152d61a035913352cbc8f9
MD5 6b90abafe767a2408cbbd9a24ebd748d
BLAKE2b-256 c19050aa16053f8c1cdb121134a5359f2e3fc6f8a1dbccdf644f0b6630511edf

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cdaf09c397564198a70a2337a604189cea5f914d1b9e9484a5115819d80e0596
MD5 dea243eeecb3701b1da48613b282012a
BLAKE2b-256 0569fb9d0231541e30da8ccd104a5b6c4782d57ec3269f3451ea80900269b00d

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 078c6cd2d5cecb0326dc11640cd800ff00df8f1e7858d6754edb8086c936aa28
MD5 11f2f6c0e38dcaa4d028e954d23606e2
BLAKE2b-256 3f14f1dba591648e907c22d4cc1531c018c4062c4524e6ac35a5c917f5dfb35a

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 132d9039cde884fb4e930fbcd82890ed8ad803224a83626112abdb142113dab2
MD5 f7ecda1468cbe62c298661b20dc57514
BLAKE2b-256 dc01a3a8294e59e39563e9cd55a9826e677c185b3acfbab43e0f69866fd0edda

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 942496f94e633b4bae3ca914394ab1d41edd64f58da6d54a6372a9cd27d3076b
MD5 be63c01d5fd2a6efffa3835de8a674c6
BLAKE2b-256 37ebf51a9a4a01bb61a7ba1de329569d3b966bf169f7bf2e2a979f91edac2510

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2cad6c47a1190c72231357d05d228afc503e407cc7ff1890648ad4b203379d67
MD5 08322b15191832b69cf5386d524813c3
BLAKE2b-256 f72965765b035ee0c9f590da74044e84a075977c57003edff5d00769d81f766a

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 076f352190f928562b3f308b7a8ec1870ea41c703421d70e1a20d322ff6a3ce3
MD5 1302ca627e49c5ca9a9a5260fec34fdb
BLAKE2b-256 e81250d1b7796f7a5111330b6c2f160252fa92125600999471a6f007a99d1217

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 701294c9b2d1199687fd4313afa9efeefca3fc24a92212091ab852159ffa3133
MD5 fd4927386bfded9e9e9e03bf1c7977e9
BLAKE2b-256 54ba6be69a224717d0c931afbc109e079c6c7164c4c335463f8f4a37516b461a

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 16df9c4e5c4bf7dfee1bc2b799e2e235fe49556614b3e7cbec180844f462f209
MD5 bbee47df287579747805d63d668339f6
BLAKE2b-256 65ace033d82b694985cb18317250614b1a437dca295a034a20b16dac9880cafe

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a855913fdc8c11cab711151fa74bc5368fd449796ea25193802012e71b565d17
MD5 1f75b4120c0b02238ecbeaa7b9786583
BLAKE2b-256 1eedb3e644a887e9a0a8f3760af2151b2185de1f9d92e7ddc3c71bcda2781425

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c81a5f014bf5da8cfa51102fc7e6db60158d1a0ccee52e47aa969e5a467b2596
MD5 6ac93d3bb39bdc025f35bce3c15cdf79
BLAKE2b-256 94deb46e1986d031df86853e56f9f4faa3591e2626c779a45514e4219e0b67f4

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 baaa715642bdca84cded3fe3955661e7e76f22c4f25e4ddf9fd3ba40f3b7283f
MD5 297bd46ad4a0b8b26e903afbd5d87dea
BLAKE2b-256 95b1d8f49d61a180e7233f16f31c228d8d528667385af8f67b4552d60fdc004c

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 3d28dadea02425b3d4d3bf9e5b0eadcdd89ea3ef93da0fb9830caba247dbcf72
MD5 d335b6de930328f7930561d194ea9d20
BLAKE2b-256 91cd81f95f8fda4aa8f0eda657bd50b61e11236f11a86ca557da277b8144ca73

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 30d662d00611ac970e1e967bac2c66e4e69a44cf79a783dcf404e4c104e45e1e
MD5 30ca9af3887d587bb8c7ff492f727455
BLAKE2b-256 0a5b81fce82d393128377a81493a1ffae0479de5b66ec24d5a5e75e31ab099c8

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bec8289023284dfa2afc1c0468a1b142ee2955e81be9a94a1f3e65bddf2e2bc9
MD5 781d528b7b301be7c06f3c677bc11f05
BLAKE2b-256 3c2228b85932c15bca7c8c62e1f5cdedf21d090d67d2852dc5a0d7f82ae1a0ab

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 062261a7e0e560cd5b0624a17c80045b68fa895d962f6b94c5e60b238a6c5baf
MD5 29238d0aa13e8cf1b8b04185e7933284
BLAKE2b-256 64fb14176b552a28785997a6fb4817db3727c27284f3c97047f81a1ded6e97db

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4a85fcecf48a2fd1e934b68134039fe16d694304c0125f0bcbe64676a85543d0
MD5 8664d8c578f594905c457ee1eeecf08c
BLAKE2b-256 52f90f3e2d748362a7057b72201d01cb0b00127ea2dce62d2ebbe8721ab8fe82

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3bab756ec348b03d4f357fb1f08cc87e20c9cecbb5c06e7b08adbb352b6c3a79
MD5 c3236d821bbc78927fa40a01a60f41f3
BLAKE2b-256 3db87b5d9e9c71a3be48349573e6e5a75407a09e0f45de55490d401ab6c0440c

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9e774d263192e0791d3e6396d981171a01dafb0543666edbe48d9328452645a0
MD5 3456c3fa8c630dcf64ddd9544f16212f
BLAKE2b-256 095319c0efe3a895918178b510305447c63af60726972c7f17a2f38bb581dc30

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d860c817f2a71d0d991c6335222d10b26be8b83cd125a01785bfec55223cc16a
MD5 bb19d383f0c0f0e2f5fd813c294320a3
BLAKE2b-256 a168b580bc3ba0a8ea47facafe1af9684f9590530b686ac7a9367f7bc7c19f6b

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 16625decbf6f7d274fd65061d019e9ac155c29f4239efa4735fb76241bff0f0d
MD5 0ef6496594d673ea14ea50cb567b8f63
BLAKE2b-256 62742b64de4ed12547374ea0c2bee4e7d0641fad870ea9859cb2cd117ba5bccf

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2fb203c74ba7d08ae1f95519888efefd66912ffb9f9c74ef855b66d3a4d171f9
MD5 5d975937dd0963854d05a4828d0c1c9a
BLAKE2b-256 40c6ee88d772d8d73f192c0d5c97d1d5f1dd7a09018ed3d788812335e34675ed

See more details on using hashes here.

File details

Details for the file biobear-0.18.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.18.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 873295c1bb76f7eda9da814a7573bbf480a8d0f0d10ec078271a17c513bd714e
MD5 8b813b209417ce8b5d79594e8fd92819
BLAKE2b-256 0d8d9e3fcbfb37b7b829e71cf1566a6c1c113c3edaedc0a8b818a2529ff4c291

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page