Skip to main content

A package for working with Bioinformatics data with SQL and Arrow

Project description

biobear

biobear is a Python library designed for reading and searching bioinformatic file formats, using Rust as its backend and producing Arrow Batch Readers and other downstream formats (like polars or duckdb).

The python package has minimal dependencies and only requires Polars. Biobear can be used to read various bioinformatic file formats, including FASTA, FASTQ, VCF, BAM, and GFF locally or from an object store like S3. It can also query some indexed file formats locally like VCF and BAM.

Release

Please see the documentation for information on how to get started using biobear.

Quickstart

To install biobear, run:

pip install biobear
pip install polars # needed for `to_polars` method

Create a file with some GFF data:

echo "chr1\t.\tgene\t1\t100\t.\t+\t.\tgene_id=1;gene_name=foo" > test.gff
echo "chr1\t.\tgene\t200\t300\t.\t+\t.\tgene_id=2;gene_name=bar" >> test.gff

Then you can use biobear to read a file:

import biobear as bb

session = bb.connect()
df = session.sql("""
    SELECT * FROM gff_scan('test.gff')
""").to_polars()

print(df)

This will print:

┌─────────┬────────┬──────┬───────┬───┬───────┬────────┬───────┬───────────────────────────────────┐
│ seqname ┆ source ┆ type ┆ start ┆ … ┆ score ┆ strand ┆ phase ┆ attributes                        │
│ ---     ┆ ---    ┆ ---  ┆ ---   ┆   ┆ ---   ┆ ---    ┆ ---   ┆ ---                               │
│ str     ┆ str    ┆ str  ┆ i64   ┆   ┆ f32   ┆ str    ┆ str   ┆ list[struct[2]]                   │
╞═════════╪════════╪══════╪═══════╪═══╪═══════╪════════╪═══════╪═══════════════════════════════════╡
│ chr1    ┆ .      ┆ gene ┆ 1     ┆ … ┆ null  ┆ +      ┆ null  ┆ [{"gene_id","1"}, {"gene_name","… │
│ chr1    ┆ .      ┆ gene ┆ 200   ┆ … ┆ null  ┆ +      ┆ null  ┆ [{"gene_id","2"}, {"gene_name","… │
└─────────┴────────┴──────┴───────┴───┴───────┴────────┴───────┴───────────────────────────────────┘

Using a Session w/ Exon

BioBear exposes a session object that can be used with exon to work with files directly in SQL, then eventually convert them to a DataFrame if needed.

See the BioBear Docs for more information, but in short, you can use the session like this:

import biobear as bb

session = bb.connect()

session.sql("""
CREATE EXTERNAL TABLE gene_annotations_s3 STORED AS GFF LOCATION 's3://BUCKET/TenflaDSM28944/IMG_Data/Ga0451106_prodigal.gff'
""")

df = session.sql("""
    SELECT * FROM gene_annotations_s3 WHERE score > 50
""").to_polars()
df.head()
# shape: (5, 9)
# ┌──────────────┬─────────────────┬──────┬───────┬───┬────────────┬────────┬───────┬───────────────────────────────────┐
# │ seqname      ┆ source          ┆ type ┆ start ┆ … ┆ score      ┆ strand ┆ phase ┆ attributes                        │
# │ ---          ┆ ---             ┆ ---  ┆ ---   ┆   ┆ ---        ┆ ---    ┆ ---   ┆ ---                               │
# │ str          ┆ str             ┆ str  ┆ i64   ┆   ┆ f32        ┆ str    ┆ str   ┆ list[struct[2]]                   │
# ╞══════════════╪═════════════════╪══════╪═══════╪═══╪════════════╪════════╪═══════╪═══════════════════════════════════╡
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 2     ┆ … ┆ 54.5       ┆ -      ┆ 0     ┆ [{"ID",["Ga0451106_01_2_238"]}, … │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 228   ┆ … ┆ 114.0      ┆ -      ┆ 0     ┆ [{"ID",["Ga0451106_01_228_941"]}… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 1097  ┆ … ┆ 224.399994 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_1097_2257"… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 2261  ┆ … ┆ 237.699997 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_2261_3787"… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 3784  ┆ … ┆ 114.400002 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_3784_4548"… │
# └──────────────┴─────────────────┴──────┴───────┴───┴────────────┴────────┴───────┴───────────────────────────────────┘

Ecosystem

BioBear aims to make it simple to move easily to and from different prominent data tools in Python. Generally, if the tool can read Arrow, it can read BioBear's output. To call out a few examples here:

Polars

The session results and Reader objects can be converted to a Polars DataFrame.

import biobear as bb

session = bb.connect()

df = session.sql("""
    SELECT * FROM gff_scan('test.gff')
""").to_polars()

Known Issues

For GenBank and mzML, the naive SELECT * will cause an error, because Polars doesn't support all Arrow types -- Map being the specific offender here. In these cases, select the fields from the map individually. Alternatively, you can first convert the table to a Pandas DataFrame.

DuckDB

BioBear can also be used to read files into a duckdb database.

import biobear as bb
import duckdb

session = bb.connect()

session.sql("""
    CREATE EXTERNAL TABLE gene_annotations STORED AS GFF LOCATION 'python/tests/data/test.gff'
""")

result = session.sql("""
    SELECT * FROM gene_annotations
""")

gff_table_arrow_table = result.to_arrow()

duckdb_conn = duckdb.connect()

result = duckdb_conn.execute('SELECT * FROM gff_table_arrow_table').fetchall()
print(result)

Performance

Please see the exon's performance metrics for thorough benchmarks, but in short, biobear is generally faster than other Python libraries for reading bioinformatic file formats.

For example, here's quick benchmarks for reading one FASTA file with 1 million records and reading 5 FASTA files each with 1 million records for the local file system on an M1 MacBook Pro:

Library 1 file (s) 5 files (s)
BioBear 4.605 s ± 0.166 s 6.420 s ± 0.113 s
BioPython 6.654 s ± 0.003 s 34.254 s ± 0.053 s

The larger difference multiple files is due to biobear's ability to read multiple files in parallel.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

biobear-0.19.5.tar.gz (804.7 kB view details)

Uploaded Source

Built Distributions

biobear-0.19.5-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.19.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.19.5-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.19.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.19.5-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.19.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.19.5-cp312-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

biobear-0.19.5-cp312-cp312-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

biobear-0.19.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

biobear-0.19.5-cp312-cp312-macosx_11_0_arm64.whl (17.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

biobear-0.19.5-cp312-cp312-macosx_10_12_x86_64.whl (18.5 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

biobear-0.19.5-cp311-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

biobear-0.19.5-cp311-cp311-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

biobear-0.19.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

biobear-0.19.5-cp311-cp311-macosx_11_0_arm64.whl (17.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

biobear-0.19.5-cp311-cp311-macosx_10_12_x86_64.whl (18.5 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

biobear-0.19.5-cp310-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

biobear-0.19.5-cp310-cp310-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

biobear-0.19.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

biobear-0.19.5-cp310-cp310-macosx_11_0_arm64.whl (17.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

biobear-0.19.5-cp310-cp310-macosx_10_12_x86_64.whl (18.5 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

biobear-0.19.5-cp39-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

biobear-0.19.5-cp39-cp39-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

biobear-0.19.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

biobear-0.19.5-cp38-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

biobear-0.19.5-cp38-cp38-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

biobear-0.19.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file biobear-0.19.5.tar.gz.

File metadata

  • Download URL: biobear-0.19.5.tar.gz
  • Upload date:
  • Size: 804.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for biobear-0.19.5.tar.gz
Algorithm Hash digest
SHA256 cf404912cd566cb0b0a2e94cfcd7effb20050ae0f97e52e99b51d46dc0dc9511
MD5 cb399dc57d80565f4ff6e7066f3ff02f
BLAKE2b-256 bfe51780d94df8571d9dbc4c261d3bf1fc98b7cac1d240cb4c2600355e2a4dfd

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f7127b31caa962ae762f40340b5982005b0e9904d0fe7269286144248b7c9363
MD5 b7626d0e3c1d6da033a0315f3d9f00e3
BLAKE2b-256 e76b53da3618dd37e7b3abda96d6517069dc0489f45a40ab07598bfd2d8854b8

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cdbb1dce5a3512904547769d50614bfc874ae19d7f1f83c6b49c82743ca0aab6
MD5 39bc52c527c69ee82f8bc9ddaea06a7b
BLAKE2b-256 6899af8a79966e4fa37ea584bfbcf69d89a95ae434aac8ef47716c5361dbc86c

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 051e908884260c8498cbbee518d497da87e24b657bbb4442b22ea05e6ec5b3f5
MD5 851369d1337b9f6b63c6b18648f65890
BLAKE2b-256 64894cdd520435f31f150fed38f104fa59a8797ed639b2a826d602f0f7abb197

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2caf45ff799cbe7b81edba7d5d4c1b0f90bbefc27961e9a628b4280f274eff19
MD5 0fd52684d735ca58d5bfb3156615a312
BLAKE2b-256 a10216280d5ac1ad3a8e675d8dcd52da696752d5dbb3be765f8ab566e8587034

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9875db140a0ab1a568431e3bc9f7426a9397b7863278c9f29e685ba1966b7358
MD5 c0222567905989398df4d3d87bb7041e
BLAKE2b-256 60b74c8b61c57200c355f7b4263eb6f43492b1c1a20e21dcddbb6fb85d1746e3

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b98cbaf5dc783d585b40f4dd927f6fa67b000c6a39b6160371ea1283854b467c
MD5 9e139d4808a751adae724dd6385abd4d
BLAKE2b-256 b0506e40bf7ea6fa37d4d11317635c9078d694ba21d1d4057b59653a6a6a079f

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 c21df725a4975d9109b7f48939a1585783ea5b9a9673e56ae437c4674234922e
MD5 3bae0481bd746507deb81cac8aa3a1d9
BLAKE2b-256 5cadf1dc6c0b56095b6ac310a3fec3247aefc0b6eef945120a15f1945b0c2a05

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5280a2cdb5622a77ecb43ffdbe99417d743dd0e8836adcbae2828991564cd111
MD5 79cde6c1f7612bc2d2ef3b0856fcadfc
BLAKE2b-256 58a75515eb0f07c2d61109442f2dff2d215a5afac8a37468b57370865d29b1e8

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 01d2d34a95da61fecf7facd37ee79922a51f9bf136aaa27d9c33fc129fa67300
MD5 369f8a07ce697ee13c9aeb99dc0ed7b4
BLAKE2b-256 1c1a16b0f91fb3247feeb91047e6b71904b7b0058800d1624c7e3295e78fe1fe

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 18108b5a5fef79e24bdde4272773e4938b3c65f591bcbbbf0bc06bab0ec785a4
MD5 8345af851fc95b17675be90cc5e71853
BLAKE2b-256 d08305bdc9618ee199195a0599fedf7d33502b39260917688999e45230262de7

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 1a3344d921b2dcf52f0e0216ccdbb9bf808843a44e3e071019bad435b80158e0
MD5 2ca48705011ffc140ce9faefbe10de7f
BLAKE2b-256 79ff04d9a1ee18f16fc70198c3b1faec0097f96bb886d17ada34e35dc9232a24

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 7559299aecad5fbb9e1ae62c80a7bdb6d0472bb553222e68c8d8b7da7c561f47
MD5 a04a364b6241e0ccaf582a734ef89939
BLAKE2b-256 17a0ef9869dea11c0395f688fe34497718323c896e59f4cade2ea7d9bc01fc4e

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8c8b50db9dcbca526097fffc06f6af0f7ad703b0fb7509afcd3197ba6217cf19
MD5 8c283a6bdb0ed002d8186deab9cfd0bd
BLAKE2b-256 46ad6e9a11cbc4aa25de231abd23c6a7e045053fc4e766e09dc2b70dabda1358

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bab96531b82a436012ebe64d6b7caa2b2d48597a695e4aeca60bc8dc78d8f519
MD5 40adb9f6273ec6883a4743cd679659b2
BLAKE2b-256 14a2c1a230ad9c35c3df1bd946ebe7314db17de5594c4254a26333b4cec87bf3

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 928e66259e77d375e46685b39d7945dc163461287b19423d23ecc43e25131004
MD5 c2ea0d76654bd91c96dcd1ad2e05070a
BLAKE2b-256 6860dec14b454d0381275e006d8bda06cc31faf9fa3bf23f886958c3c4ff0a13

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e91b545d1be8854da7d6cd78678d55802810cb3f21486ef77a3c56e95e91d2c7
MD5 4e07d97af3258f7028418166a3d32de3
BLAKE2b-256 2cdfe6852d4cd2d8339b18b61ba73032286ffb2540b02a7c1a637f6511cd84fa

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 de853d6f83b09a95798f1f4b48754774cc17c3bbb494f4b8bbdc03af85e3dc4b
MD5 ec83af37387deb71ea31038cd9e813a5
BLAKE2b-256 49939b280244e61f3c75356ee8c4cd50c869a51e28f3d54597201bd352c952cd

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d526a1b3f3f79c316ba44b42a68221f9d58cee8ccb8f39e173034555e73803b8
MD5 95286faa7b26bf7d54f37560832b5610
BLAKE2b-256 b72462c76394d3286b25be287d8cca10ee3b3621a0bcd533484eba018cf66a48

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b716de74548302eff448e3db02f0d4a029d718c537cceaa6cdc8ed7a3e7b2710
MD5 eef5ea57db7a0f0c81bda370b7c7a0c0
BLAKE2b-256 58c0ab5fc98d61a6deb59d3ca6b15d61bb8a0e920fe3d915cbbb956513608397

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7aaa1069c4afcbc65e3fb00ba95a4244197e8a746305f2a712b507d5dbb44fee
MD5 23f31828f5efb3166ccb370bfa04b3d8
BLAKE2b-256 e3ea46362e4d495e74fc37cb672d1c753dd2f0fc5a10f4510a3204835fbebd37

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ad7cc01e1ee99329f9f4e9387ca03355e7bc5792f0093956be953bb681ba44e0
MD5 d5ee93f5263a8319a6c8bcab49709ce5
BLAKE2b-256 7334c12907899bad3e0edb5402329cbc5cb232a72358f497aa2371369894287d

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 85bfa35fe8e8bf71b4ba15643dcf979d68cef91c3b97cf2148d1bb141a088e6d
MD5 955cc90d79a1c7a34ec664a1147fa4a7
BLAKE2b-256 2b38ab4e89f2d94090f2d2d690f439b3afdc57f8d01a8b0e5ff78378da489fbc

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 41bad55f6d8a724b72d4fb4abd03f8ad022ed3379414ef6b955a6266e44f236a
MD5 7f0f3cf96285ab1c8060ea6ac873414c
BLAKE2b-256 0c3c8ee3d151430ec80dbb2d56d736547d1b3fb5ce05bd4ddb55d06ed989c610

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cad502a63aa6eed86b874d70f583f22459c88d8a59a832221dc5dc947889722d
MD5 52b8d32bafbe00aaaa64d980b9117f5c
BLAKE2b-256 28ff6c96c4b8b639e0cd09f3ec83ac945c92e82f440d4645048846679275b5d2

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 db31e8628ca0e562085b1f7c2f4463b2d77d1439adc3e3fe5b51cfee019c86ed
MD5 ce28cd89070d60efbbe7046bc62d965e
BLAKE2b-256 e128e09239796cc4801881ef8af70f203a7ab20ec1cb9945cd32fa50cff16b2d

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 41e98cb743c6218a9934668cec3ea336bdc499f9cef69e0a8203e5e068b25dfa
MD5 3a10fc289a9a2f9b88de711571fa33dc
BLAKE2b-256 c4c4c572e8f7ec6e9818e0c53da757b55287ada13394c639575b2c09ad419a0f

See more details on using hashes here.

File details

Details for the file biobear-0.19.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a6691fe23d2780a8711d657573c5e4c9b9fd81133993b6d96ee1bba86f7786fe
MD5 7d376e60451152b33d0ed0c5eb50eb44
BLAKE2b-256 6b4ca41ae9b204cc75618da378c1442b0ad4f503b669ce960a50d04e5392ffb1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page