Skip to main content

A package for working with Bioinformatics data with SQL and Arrow

Project description

biobear

biobear is a Python library designed for reading and searching bioinformatic file formats, using Rust as its backend and producing Arrow Batch Readers and other downstream formats (like polars or duckdb).

The python package has minimal dependencies and only requires Polars. Biobear can be used to read various bioinformatic file formats, including FASTA, FASTQ, VCF, BAM, and GFF locally or from an object store like S3. It can also query some indexed file formats locally like VCF and BAM.

Release

Please see the documentation for information on how to get started using biobear.

Quickstart

To install biobear, run:

pip install biobear
pip install polars # needed for `to_polars` method

Create a file with some GFF data:

echo "chr1\t.\tgene\t1\t100\t.\t+\t.\tgene_id=1;gene_name=foo" > test.gff
echo "chr1\t.\tgene\t200\t300\t.\t+\t.\tgene_id=2;gene_name=bar" >> test.gff

Then you can use biobear to read a file:

import biobear as bb

session = bb.connect()
df = session.sql("""
    SELECT * FROM gff_scan('test.gff')
""").to_polars()

print(df)

This will print:

┌─────────┬────────┬──────┬───────┬───┬───────┬────────┬───────┬───────────────────────────────────┐
│ seqname ┆ source ┆ type ┆ start ┆ … ┆ score ┆ strand ┆ phase ┆ attributes                        │
│ ---     ┆ ---    ┆ ---  ┆ ---   ┆   ┆ ---   ┆ ---    ┆ ---   ┆ ---                               │
│ str     ┆ str    ┆ str  ┆ i64   ┆   ┆ f32   ┆ str    ┆ str   ┆ list[struct[2]]                   │
╞═════════╪════════╪══════╪═══════╪═══╪═══════╪════════╪═══════╪═══════════════════════════════════╡
│ chr1    ┆ .      ┆ gene ┆ 1     ┆ … ┆ null  ┆ +      ┆ null  ┆ [{"gene_id","1"}, {"gene_name","… │
│ chr1    ┆ .      ┆ gene ┆ 200   ┆ … ┆ null  ┆ +      ┆ null  ┆ [{"gene_id","2"}, {"gene_name","… │
└─────────┴────────┴──────┴───────┴───┴───────┴────────┴───────┴───────────────────────────────────┘

Using a Session w/ Exon

BioBear exposes a session object that can be used with exon to work with files directly in SQL, then eventually convert them to a DataFrame if needed.

See the BioBear Docs for more information, but in short, you can use the session like this:

import biobear as bb

session = bb.connect()

session.sql("""
CREATE EXTERNAL TABLE gene_annotations_s3 STORED AS GFF LOCATION 's3://BUCKET/TenflaDSM28944/IMG_Data/Ga0451106_prodigal.gff'
""")

df = session.sql("""
    SELECT * FROM gene_annotations_s3 WHERE score > 50
""").to_polars()
df.head()
# shape: (5, 9)
# ┌──────────────┬─────────────────┬──────┬───────┬───┬────────────┬────────┬───────┬───────────────────────────────────┐
# │ seqname      ┆ source          ┆ type ┆ start ┆ … ┆ score      ┆ strand ┆ phase ┆ attributes                        │
# │ ---          ┆ ---             ┆ ---  ┆ ---   ┆   ┆ ---        ┆ ---    ┆ ---   ┆ ---                               │
# │ str          ┆ str             ┆ str  ┆ i64   ┆   ┆ f32        ┆ str    ┆ str   ┆ list[struct[2]]                   │
# ╞══════════════╪═════════════════╪══════╪═══════╪═══╪════════════╪════════╪═══════╪═══════════════════════════════════╡
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 2     ┆ … ┆ 54.5       ┆ -      ┆ 0     ┆ [{"ID",["Ga0451106_01_2_238"]}, … │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 228   ┆ … ┆ 114.0      ┆ -      ┆ 0     ┆ [{"ID",["Ga0451106_01_228_941"]}… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 1097  ┆ … ┆ 224.399994 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_1097_2257"… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 2261  ┆ … ┆ 237.699997 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_2261_3787"… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 3784  ┆ … ┆ 114.400002 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_3784_4548"… │
# └──────────────┴─────────────────┴──────┴───────┴───┴────────────┴────────┴───────┴───────────────────────────────────┘

Ecosystem

BioBear aims to make it simple to move easily to and from different prominent data tools in Python. Generally, if the tool can read Arrow, it can read BioBear's output. To call out a few examples here:

Polars

The session results and Reader objects can be converted to a Polars DataFrame.

import biobear as bb

session = bb.connect()

df = session.sql("""
    SELECT * FROM gff_scan('test.gff')
""").to_polars()

Known Issues

For GenBank and mzML, the naive SELECT * will cause an error, because Polars doesn't support all Arrow types -- Map being the specific offender here. In these cases, select the fields from the map individually. Alternatively, you can first convert the table to a Pandas DataFrame.

DuckDB

BioBear can also be used to read files into a duckdb database.

import biobear as bb
import duckdb

session = bb.connect()

session.sql("""
    CREATE EXTERNAL TABLE gene_annotations STORED AS GFF LOCATION 'python/tests/data/test.gff'
""")

result = session.sql("""
    SELECT * FROM gene_annotations
""")

gff_table_arrow_table = result.to_arrow()

duckdb_conn = duckdb.connect()

result = duckdb_conn.execute('SELECT * FROM gff_table_arrow_table').fetchall()
print(result)

Performance

Please see the exon's performance metrics for thorough benchmarks, but in short, biobear is generally faster than other Python libraries for reading bioinformatic file formats.

For example, here's quick benchmarks for reading one FASTA file with 1 million records and reading 5 FASTA files each with 1 million records for the local file system on an M1 MacBook Pro:

Library 1 file (s) 5 files (s)
BioBear 4.605 s ± 0.166 s 6.420 s ± 0.113 s
BioPython 6.654 s ± 0.003 s 34.254 s ± 0.053 s

The larger difference multiple files is due to biobear's ability to read multiple files in parallel.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

biobear-0.19.6.tar.gz (805.0 kB view details)

Uploaded Source

Built Distributions

biobear-0.19.6-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.19.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.19.6-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.19.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.19.6-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.19.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.19.6-cp312-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

biobear-0.19.6-cp312-cp312-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

biobear-0.19.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

biobear-0.19.6-cp312-cp312-macosx_11_0_arm64.whl (17.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

biobear-0.19.6-cp312-cp312-macosx_10_12_x86_64.whl (18.5 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

biobear-0.19.6-cp311-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

biobear-0.19.6-cp311-cp311-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

biobear-0.19.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

biobear-0.19.6-cp311-cp311-macosx_11_0_arm64.whl (17.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

biobear-0.19.6-cp311-cp311-macosx_10_12_x86_64.whl (18.5 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

biobear-0.19.6-cp310-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

biobear-0.19.6-cp310-cp310-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

biobear-0.19.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

biobear-0.19.6-cp310-cp310-macosx_11_0_arm64.whl (17.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

biobear-0.19.6-cp310-cp310-macosx_10_12_x86_64.whl (18.5 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

biobear-0.19.6-cp39-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

biobear-0.19.6-cp39-cp39-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

biobear-0.19.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

biobear-0.19.6-cp38-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

biobear-0.19.6-cp38-cp38-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

biobear-0.19.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file biobear-0.19.6.tar.gz.

File metadata

  • Download URL: biobear-0.19.6.tar.gz
  • Upload date:
  • Size: 805.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for biobear-0.19.6.tar.gz
Algorithm Hash digest
SHA256 5a41635c2df1a94b8369ac1f4155b243f7c0c9ce4fa0440a66c93aa072d82463
MD5 f1ed66d337d2c1e8655685bb41ab1249
BLAKE2b-256 2723d010ad8978882a7924cd626d3628c7bdedfe60c4c4de86e40a96874bdda7

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ed789aa066a08d270085196fc68bb3f4a863e6586e111db424618c442d8ff5e7
MD5 590ddc54cd729e4c7759ff3dc19f33ab
BLAKE2b-256 5e1f26ad3cd4269cecbb0d6534dd5a233a922c818c7462fafa9578804e16ea5d

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d77d7777de975364e706d019977ed17887d8bd0606703e62e036ede691a5ca1c
MD5 357bc89c6890e562b5f1219125575123
BLAKE2b-256 6b55d6b33741fa0c2fc92e4e65df26d2a260460b89435796626741227f465026

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9176a080da6abcc1af122bac8bd4c7546ac03580488d6de70a3525e90cccd69b
MD5 173d971ce316702d4b0f5f13cb59cedd
BLAKE2b-256 245540f50a371dbaef6d15996b99063923a86f6d00009f1e0ed8e308dc03a597

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b707f425d045b5318ced90c50760a9e8c7a616c0e9f9a8136fad6ecbf32d0c5
MD5 9a7be02edfa0c2855d140f8c298312ae
BLAKE2b-256 253a93aaeedbf3f1a2f9275adc5ea08d729e878fe45924c550fed9bf0d104754

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6d58d18d1c88cb15234a5646beb167ccd99296612dfe8af0b71ad568702cf217
MD5 3ca13616234dd89be886b7cd706ec1d9
BLAKE2b-256 dd75ce630e7f96ada2d8a13ebd3a94ca79588651e13feb3f8fb60a5742a77fb2

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5035bcdf56cd13e9237495a7454930ce37a3f53031449d80e637c194ef6dbd24
MD5 d72d2fa45b539add965da57d00b27789
BLAKE2b-256 e9c6672ba700be4d6e4eb872f3f7536f4d3bf61cb4114da194a369502f256f37

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 905c784a8650dea4d0ebfa917f603f7b0db4ec4ba5a4fbf420af73191c56f93c
MD5 963ab527bb1f2f5329c8deaf59055b35
BLAKE2b-256 c3c0f042ee5ce2381dc1a4d07f88496383c42d11b7037a64f007433a47fe60d6

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 73107e1b08541ba37c73a5364737c908971907d82f1b1305c0d0f39aa3ffbb21
MD5 3850f7c265412448923807ec0d24b615
BLAKE2b-256 0457f07c147df51017d2756dde949756dcc2a5527f70d1246d26420509622394

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3536d28851f0f77ea1515ced8963cb273d5a8bed1857450034892796f141e05b
MD5 458f6bb8cb8a1724a70d371196f5f10f
BLAKE2b-256 0444f836ce11ee88cc54e0dd8deb23b8cf7c668d004e05d89e96aee0d4bdc8a7

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bd115af1ce0a80e78b15e8c96a91101036eee8d8ea17471253bf55d5d19086d4
MD5 376e905c85f0d13715f8dbfff99231f7
BLAKE2b-256 369913a1b33f59aa47060143f32c2486411990993a6896c312d65ef674bfbde1

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2b31d892f581eb105a567560071504e8b4d5bf2e1eaaa1d8b854630b252ceed7
MD5 d5a2cb0f76bdb7d52f6ca9815105ac5e
BLAKE2b-256 2f7ff84a189ec947a3b0f551251d4e43b7e09947dbdd265d89cbbe4c2adff76f

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 69147fb7fc4101ac484907b42ff4712933d8993faaebcbfd90b2e396c04d25da
MD5 0f9e83c264cc23e762bc9beda1c96541
BLAKE2b-256 a71ec10cace7f34397e4787617b6b1f9e62a941dc12350659c31e4b1e3fca76e

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 99b8debfd82810510b2da3325f5e32b2dd56d9b44ac96929c3acceeaed9aa101
MD5 a2e6cf03506ed440cc56bdb8510eb13c
BLAKE2b-256 f5f56197cca7661aa13cb24c89ae2d7918e1bbe472e846541f5d16cc7a7eeb8b

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 caa092333af309451c2b305768879ff26491dc27a553a88f77fed62699f1c804
MD5 24dd78417fbd5a60039464a18d065bb1
BLAKE2b-256 be7ba9513d1434748d22aaeb2f7b87fcdfb095b391323ad64b108590ac7785ca

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f4681e6e0662c4bd4cfc2158652bbdff371ca596a33f594bd00acdab92d35255
MD5 c370929e8ccb096b10c07f0e5d421ac2
BLAKE2b-256 759b31bd562329c0e4b0351c1645fde20ec3c589f586660db239cce83f1a2e9b

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 eb6089e8119f0fa8286c02eaac04065be9725aa8efefd6a40256e48451791d93
MD5 7c81385c801e9d998b99e0e89829b63c
BLAKE2b-256 ea80a367faf221c4a6030be40fbbc238c41de73ecf527c65354ddbd6511645dc

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 bd27783bf0a2d77a4ba39fc7769eebc463bdc9f2a7f1565d9b4e6ffb6c06e075
MD5 f8807bfc04b0e1a4fc9b3c140e130425
BLAKE2b-256 317415c5ff0b0179d18f8c79ad7f9b8a34bea72ab7af982ce87c3ac6d9ba6bc7

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2a0ade03055e7761154e3adbc9ef4c2eda7845daa1ba629bf46cd1c146f73c96
MD5 7c5cd0039c478a5d0d67f769f9634070
BLAKE2b-256 8efd1802ed6f6d2e206b9ab738ec515bfe892f3cd36adc857fcce6f7934e4945

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8eb659600b06ec2c822bdba20dd21f8e608eaad82c1a5c7bb0548b6db06211a
MD5 ea6e10f8156e6a414618600eea30c31c
BLAKE2b-256 7a69d6b5eaca086a34acab8bc6bd3dc123c1c449695b1a5f7fadbc26dcd9b370

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5c601eb3a05dbb590b081d8d8a8b58e1e3469c1cd5b1f4e429b2c461e8e48a88
MD5 369b376da1a156eae90669a5d2abd558
BLAKE2b-256 b58c9e8bbd101cc8cc2fdcd00fafcea904efa937cedae82e1c378f8629e886e4

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 7ae1fe919b3036e376e1e98c027dbd93a8b74cb20fee281c99e479ae2e887b55
MD5 ce5702f7723758cddd4775733f0cbbc4
BLAKE2b-256 465e56a8d48e9869aaa0af38cecce132b65a954431dc52035bb1eaaf62978d21

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 a04b79b5c7419e7df6260dc5d62fdfe88e23cdd7f529b80de179a3a53f83de4c
MD5 4ae387ba3fdcad3ae60e78f0b55b1fea
BLAKE2b-256 d479240ce378168815f888a285fe1cf368f07cb1219b87728bd7ee321cc2a1f7

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c711e8ba98f5c92eccec368c736bebc9b135413b85d32db5d991a4d242a59fb8
MD5 69f1c16469550dba2b34b5ac2b9bf292
BLAKE2b-256 e94413eb1211d005e8871a9b74d6786b5fd9a5e2b518da764754a3e7b0b8b554

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fdd509183ff6d299cb1d1023a783517e93e0ddfbe6068c453eb449ab0bcdc3af
MD5 5ccaced9894dc048f46d2efcf58b1013
BLAKE2b-256 f6c55028d617f5c00dc9056ce92af1e5eb5c535b106ebaa0d16db305c0ae15af

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 00b7542c17fbfa64339dc31f7ccbb90f2be539b98206c9e17444be899c953290
MD5 6e23ef6b00ff76bdacac9864f3e8212d
BLAKE2b-256 dea161ca3cb40a54848464590db493dbd9b138fe4f384abbde089fa6b8a050d4

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 de2beb5164a9e7c8e0b93cccb6e1a00a7b50152a8d8edbd805093c45909db454
MD5 247950f60d02448870d219e983ec27db
BLAKE2b-256 898c6854813cecba53bdca440b7bd7a6193451d8f5e9842bfa727fb4c54ec2a3

See more details on using hashes here.

File details

Details for the file biobear-0.19.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.19.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9c96939460300954749eecfb109818844d50a416496357922c9814cc8e9a156b
MD5 900e3194fd261b38ab14041c2757b5e7
BLAKE2b-256 766ef5e7af37fc344db04c56fc525134619dcbe6bb94be8265b4a46c25f01219

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page