Skip to main content

A package for working with Bioinformatics data with SQL and Arrow

Project description

biobear

biobear is a Python library designed for reading and searching bioinformatic file formats, using Rust as its backend and producing Arrow Batch Readers and other downstream formats (like polars or duckdb).

The python package has minimal dependencies and only requires Polars. Biobear can be used to read various bioinformatic file formats, including FASTA, FASTQ, VCF, BAM, and GFF locally or from an object store like S3. It can also query some indexed file formats locally like VCF and BAM.

Release

Please see the documentation for information on how to get started using biobear.

Quickstart

To install biobear, run:

pip install biobear
pip install polars # needed for `to_polars` method

Create a file with some GFF data:

echo "chr1\t.\tgene\t1\t100\t.\t+\t.\tgene_id=1;gene_name=foo" > test.gff
echo "chr1\t.\tgene\t200\t300\t.\t+\t.\tgene_id=2;gene_name=bar" >> test.gff

Then you can use biobear to read a file:

import biobear as bb

session = bb.connect()
df = session.sql("""
    SELECT * FROM gff_scan('test.gff')
""").to_polars()

print(df)

This will print:

┌─────────┬────────┬──────┬───────┬───┬───────┬────────┬───────┬───────────────────────────────────┐
│ seqname ┆ source ┆ type ┆ start ┆ … ┆ score ┆ strand ┆ phase ┆ attributes                        │
│ ---     ┆ ---    ┆ ---  ┆ ---   ┆   ┆ ---   ┆ ---    ┆ ---   ┆ ---                               │
│ str     ┆ str    ┆ str  ┆ i64   ┆   ┆ f32   ┆ str    ┆ str   ┆ list[struct[2]]                   │
╞═════════╪════════╪══════╪═══════╪═══╪═══════╪════════╪═══════╪═══════════════════════════════════╡
│ chr1    ┆ .      ┆ gene ┆ 1     ┆ … ┆ null  ┆ +      ┆ null  ┆ [{"gene_id","1"}, {"gene_name","… │
│ chr1    ┆ .      ┆ gene ┆ 200   ┆ … ┆ null  ┆ +      ┆ null  ┆ [{"gene_id","2"}, {"gene_name","… │
└─────────┴────────┴──────┴───────┴───┴───────┴────────┴───────┴───────────────────────────────────┘

Using a Session w/ Exon

BioBear exposes a session object that can be used with exon to work with files directly in SQL, then eventually convert them to a DataFrame if needed.

See the BioBear Docs for more information, but in short, you can use the session like this:

import biobear as bb

session = bb.connect()

session.sql("""
CREATE EXTERNAL TABLE gene_annotations_s3 STORED AS GFF LOCATION 's3://BUCKET/TenflaDSM28944/IMG_Data/Ga0451106_prodigal.gff'
""")

df = session.sql("""
    SELECT * FROM gene_annotations_s3 WHERE score > 50
""").to_polars()
df.head()
# shape: (5, 9)
# ┌──────────────┬─────────────────┬──────┬───────┬───┬────────────┬────────┬───────┬───────────────────────────────────┐
# │ seqname      ┆ source          ┆ type ┆ start ┆ … ┆ score      ┆ strand ┆ phase ┆ attributes                        │
# │ ---          ┆ ---             ┆ ---  ┆ ---   ┆   ┆ ---        ┆ ---    ┆ ---   ┆ ---                               │
# │ str          ┆ str             ┆ str  ┆ i64   ┆   ┆ f32        ┆ str    ┆ str   ┆ list[struct[2]]                   │
# ╞══════════════╪═════════════════╪══════╪═══════╪═══╪════════════╪════════╪═══════╪═══════════════════════════════════╡
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 2     ┆ … ┆ 54.5       ┆ -      ┆ 0     ┆ [{"ID",["Ga0451106_01_2_238"]}, … │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 228   ┆ … ┆ 114.0      ┆ -      ┆ 0     ┆ [{"ID",["Ga0451106_01_228_941"]}… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 1097  ┆ … ┆ 224.399994 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_1097_2257"… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 2261  ┆ … ┆ 237.699997 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_2261_3787"… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 3784  ┆ … ┆ 114.400002 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_3784_4548"… │
# └──────────────┴─────────────────┴──────┴───────┴───┴────────────┴────────┴───────┴───────────────────────────────────┘

Ecosystem

BioBear aims to make it simple to move easily to and from different prominent data tools in Python. Generally, if the tool can read Arrow, it can read BioBear's output. To call out a few examples here:

Polars

The session results and Reader objects can be converted to a Polars DataFrame.

import biobear as bb

session = bb.connect()

df = session.sql("""
    SELECT * FROM gff_scan('test.gff')
""").to_polars()

Known Issues

For GenBank and mzML, the naive SELECT * will cause an error, because Polars doesn't support all Arrow types -- Map being the specific offender here. In these cases, select the fields from the map individually. Alternatively, you can first convert the table to a Pandas DataFrame.

DuckDB

BioBear can also be used to read files into a duckdb database.

import biobear as bb
import duckdb

session = bb.connect()

session.sql("""
    CREATE EXTERNAL TABLE gene_annotations STORED AS GFF LOCATION 'python/tests/data/test.gff'
""")

result = session.sql("""
    SELECT * FROM gene_annotations
""")

gff_table_arrow_table = result.to_arrow()

duckdb_conn = duckdb.connect()

result = duckdb_conn.execute('SELECT * FROM gff_table_arrow_table').fetchall()
print(result)

Performance

Please see the exon's performance metrics for thorough benchmarks, but in short, biobear is generally faster than other Python libraries for reading bioinformatic file formats.

For example, here's quick benchmarks for reading one FASTA file with 1 million records and reading 5 FASTA files each with 1 million records for the local file system on an M1 MacBook Pro:

Library 1 file (s) 5 files (s)
BioBear 4.605 s ± 0.166 s 6.420 s ± 0.113 s
BioPython 6.654 s ± 0.003 s 34.254 s ± 0.053 s

The larger difference multiple files is due to biobear's ability to read multiple files in parallel.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

biobear-0.20.3.tar.gz (806.0 kB view details)

Uploaded Source

Built Distributions

biobear-0.20.3-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.20.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.20.3-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.20.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.20.3-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.20.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.20.3-cp312-none-win_amd64.whl (18.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

biobear-0.20.3-cp312-cp312-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

biobear-0.20.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

biobear-0.20.3-cp312-cp312-macosx_11_0_arm64.whl (17.2 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

biobear-0.20.3-cp312-cp312-macosx_10_12_x86_64.whl (18.6 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

biobear-0.20.3-cp311-none-win_amd64.whl (18.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

biobear-0.20.3-cp311-cp311-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

biobear-0.20.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

biobear-0.20.3-cp311-cp311-macosx_11_0_arm64.whl (17.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

biobear-0.20.3-cp311-cp311-macosx_10_12_x86_64.whl (18.6 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

biobear-0.20.3-cp310-none-win_amd64.whl (18.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

biobear-0.20.3-cp310-cp310-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

biobear-0.20.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

biobear-0.20.3-cp310-cp310-macosx_11_0_arm64.whl (17.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

biobear-0.20.3-cp310-cp310-macosx_10_12_x86_64.whl (18.6 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

biobear-0.20.3-cp39-none-win_amd64.whl (18.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

biobear-0.20.3-cp39-cp39-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

biobear-0.20.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

biobear-0.20.3-cp39-cp39-macosx_11_0_arm64.whl (17.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

biobear-0.20.3-cp39-cp39-macosx_10_12_x86_64.whl (18.6 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

biobear-0.20.3-cp38-none-win_amd64.whl (18.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

biobear-0.20.3-cp38-cp38-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

biobear-0.20.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file biobear-0.20.3.tar.gz.

File metadata

  • Download URL: biobear-0.20.3.tar.gz
  • Upload date:
  • Size: 806.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for biobear-0.20.3.tar.gz
Algorithm Hash digest
SHA256 58c8ada178174513b1ba08c7cab714998240ec49c28d82fd574e1ee92177bce3
MD5 9e5545c1795758594bb523dcd2b2be8d
BLAKE2b-256 9721f760d5cf5701b7361a208d6fc42d27df9e81e16c5bc6f7069293a89f40d9

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 08fbcb31a74949524150ca26b7316999a1543309f47732e58af7054ef897f1a4
MD5 c76caefcb522db2b4ba3af76a9c53731
BLAKE2b-256 6bd15a7adbb42075979db9b6410b9504d9dc0f5c7b8ceba5b6f5e3c23e4a71e4

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 38d938fed335c5883eee0bef54a8ae35bbf94f132fe17a48180624ceb0087411
MD5 ec74c311ce11722e7c9de8c94b8e35f9
BLAKE2b-256 a5f033689dc9e05bd73256da7cf655fb19f0424aeb4a4cb2f1d06823d7a21c89

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7d070272d57e6b558e6070fe73b9ed47a6f6eb4df45dc629cd4a77b7a6907347
MD5 79409b723dc912ea90046ede63f89f1d
BLAKE2b-256 0b99246490fc1420c409b9f8b6834592e95a8afa611e08e75290fdd90d05fce0

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 250c0a5124dc573ea0e39f767da58eb14a303bdcaa4e932728c0e197dd2b3dba
MD5 5b9b7d8a91b1bed197d86bcccba74a76
BLAKE2b-256 c49fdb9aaeb0ed118a4ed6e9925bbc576ecef97990948b34b915f90135c2a34c

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f08a94f0e9c511cf7858f64784fad6aa0bebc70b9bdf2d094f5aa74627c67fe1
MD5 e1282149868d5d2e4fe48178c073571c
BLAKE2b-256 cc27ef3107ffe15f135dd0c3f9d8523fad415398d62630caf1273bc125f35a66

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff7775566caef73babbc90981baef10fd1e9d9419c0bdb33916ba633e0ebde49
MD5 bf832bb472660ac16deeb6ce0dd09e2e
BLAKE2b-256 ed3e5439c48f6877cf86ddb87896b19320de8a9b39b267ebb62f43b03ebb51e4

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 8e1907d0edbb9c7084eb18b3ff2182e00aaa32aba5d05417ebc6ded65700c574
MD5 7dc02273e7a53d749d3dd603b27706e4
BLAKE2b-256 1fcb01e0906eb4ea96c51a182726225e869356183c24d41a04a5588dd7627887

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a92242fa1dbcb9f37b9bd08a6e58699c73fbcc38b76c691260b23340f0912b3e
MD5 26bf3aa2a050e3ab8e0863da09f179ac
BLAKE2b-256 48a8efc81adbf7092efbbc5c97bcc0be4914e6a74ca3bf6213193403e197ca94

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 97b9365afa0e2ed1a9c2c56d14b8a42b555a6e28e9f3c33e6bea96b7ab692912
MD5 507bc24852559cdf2740fd5ab627c813
BLAKE2b-256 8be4140b0b741fc623b846d592536156d8cef21285a8f7762d3dc8045f4a924c

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 293da1d1cca624478bc76278e8085c9e44b02bd090c870f8dac7c0de83165b3f
MD5 f89e4524e1b610e831bd88dd6267cd2c
BLAKE2b-256 4197d5480b406a3537aeff966be6409c97e314cb497f6be3ad5936fa50aee588

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 f7e01568f12eac6a98b6dbb268b067469d25893ff9e5441503eaf303b7ee1a67
MD5 89569f46bfd251c9d1b88743282adbff
BLAKE2b-256 db64d29f807dad6958d6a5466ee779a74d7735fcd8d7f01d86b26f5e17f52358

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 0e9ff6efebae3742d9e1a6cf7c9cce599ee78f67c976c00e4dd164b01c00932c
MD5 b934567c3a1ba118345beaf32b496fcc
BLAKE2b-256 7a1c1ec956341bbe23f1db662ea4d1ccdd6c0ffed457bec137d0b1f5d4eea0ca

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d637779e4e2f4847e278320ee0ae66536f8d19d4b75edbf894ae50adabd97ce6
MD5 8e3a1fd592f76b94e5789444c2936ffb
BLAKE2b-256 f0e7a15cb06108db67d68d6faa67fda9eede8c1343066473a270984d462979d9

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06865d5593a2ac12c7d908728dfa43b130ce2ddbfdce7f950c71380ac88938d7
MD5 f9303c79d1a42b5338d8ca117ebb175a
BLAKE2b-256 a7e4bd40aa58d918cbb355142282d4afa082c2ec5d2dec2d53bf18a86bf05f16

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dd7085b1eaca8367de3ab8ecd23f17165c09c491ac36642b21cd8002a9e73394
MD5 fa4e7934a0e2965e8417617a3c7461b8
BLAKE2b-256 441a99e62821ecb0df8f2878f516842ead7ae39342b0c9fb8ab487fa4bd236e5

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2e232abce694bf252e780bed4bc4fc3f748b24813543439d3749ac930061a0f7
MD5 fc293c3710638832a27517762dc03d8d
BLAKE2b-256 d3a8dec4a4cdf3e1d2792675c7d13083e27ee4f31583972e65e3ae344fa1173e

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 9b5c200b61c54cc5f8093f86787530227f68245aee1792a9c08750a30a0d569b
MD5 3d33f151b874876f35601928794e6778
BLAKE2b-256 f2626fd57f7e3ed3967bcd8a05ea89a25c288d925f4e97313f0700d5684ca173

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5247e0a7fd0e4f3c736cfd6e05fa8af8649f2a50059ae7a26d03915d3fec24a5
MD5 e8ae51486ae8c05ebe25b49305953694
BLAKE2b-256 6b4167f85d50c074014a96e344e11845295530da292b50ddbfde9653d050b595

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f79f5469f480060e7e96b5463679daf61f98e97d11bbe77de3c274a6ceadfa6f
MD5 7b4e642d9406929aa99ff167d2b95fde
BLAKE2b-256 153fa470ea5de9b928a749aaeafe849ab38a549a909efafcc0e010166f1456f4

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9f5520215149dcf1453ecd317fa81fc6c120558df959a3abb010d0c27111fd71
MD5 369ca8311cadae58c2c70284e28d2f89
BLAKE2b-256 bcbf1400aea99a80ddf2f7826bb8d9892c7c392841f629e28704d0fd3eb63c76

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 0d1d4de118c5ae94574d3833cac183517980103fe874d64ef28158a83697b802
MD5 a01bf52e2c1612334fd8bd23da306f7f
BLAKE2b-256 0a2566b06e95d46ecc85834483bc39bbefc83b17e09d394eb98ff747f8eb8dac

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 c209c67ded3f785a7c9b1080370c77c596b03bb095b4541883e94660e294ce8f
MD5 9fc92a8f161a238dfe89096a91756b57
BLAKE2b-256 884616f6b2d91cb36ab9bd9ff3f3fdc135047fa7557351b7cfb6ff044da30806

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 44ffe80d84be75f7fb8148ee2eaa7f21cff3eaa1261d3c067929e428b9b7161b
MD5 ccb285ea5d39c7aaf4e9de3c3f84d458
BLAKE2b-256 7fca01a949cf635ac129c6974741df56eb17b6948b6deac5a39c0af0a23a6015

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a37a8a0f99ebed08fba7bf2419b8113466397f4b64871b446ca8d33a033e11f3
MD5 8c13d5b7905bf6a2406451c7a64469dd
BLAKE2b-256 3f23cdbf85206592aeac4056b8909bd3d1fbb1cac46b46c60fd36cbe49a282a2

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 96f28ec3280802fd8034c707dc0d17226fc4458727f7465b200e8745af2d6b0b
MD5 27732f12b24c7411a54a0c02904d1fcd
BLAKE2b-256 699363036235c68549a102e57ede1aaf6f5a601169b9a92072e4c82fd59d158d

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2726b47760fecac06aa3a30115af20e1e4fb568ccae9863674d66667dd1cbe7e
MD5 0044ad422a5785d6d13338a95b0ba3f6
BLAKE2b-256 6a6c58d7180b1b4d6601b7548acaadc68965f859e708e58535cff7fb2d16ff83

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 7d2c293401a2f43e54ebf9efc02d146286a6d496dfb4df0f1a48b1fe9f96de43
MD5 b9cd17b44a1727e8c58dd4e881de0eed
BLAKE2b-256 3d1135d87f8fe0071e99ef0fbc304118446ed46bdf9216e362877b8dd6b79d77

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8a0accebb95b4fc4b813ff7803efbb2d26bd46feca5ed832b9591f4e5a7e7d16
MD5 6d6fedcec282efb0444b395b3f366d07
BLAKE2b-256 6df70baa75c8b78f58946fd31ca92ecbed3cee2719703c5c5bd7ba5342604b72

See more details on using hashes here.

File details

Details for the file biobear-0.20.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 28f9dbced4adb2498fe8e62ac7d21fa4bdbaafb9f2717632423f11ffcfa87c26
MD5 3c31117a956f1b3a7fcca6c8574033f8
BLAKE2b-256 56ac170ba310df5d08964c3f59214b4923b710de8162e7736d4908ec05f066ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page