Skip to main content

A package for working with Bioinformatics data with SQL and Arrow

Project description

biobear

biobear is a Python library designed for reading and searching bioinformatic file formats, using Rust as its backend and producing Arrow Batch Readers and other downstream formats (like polars or duckdb).

The python package has minimal dependencies and only requires Polars. Biobear can be used to read various bioinformatic file formats, including FASTA, FASTQ, VCF, BAM, and GFF locally or from an object store like S3. It can also query some indexed file formats locally like VCF and BAM.

Release

Please see the documentation for information on how to get started using biobear.

Quickstart

To install biobear, run:

pip install biobear
pip install polars # needed for `to_polars` method

Create a file with some GFF data:

echo "chr1\t.\tgene\t1\t100\t.\t+\t.\tgene_id=1;gene_name=foo" > test.gff
echo "chr1\t.\tgene\t200\t300\t.\t+\t.\tgene_id=2;gene_name=bar" >> test.gff

Then you can use biobear to read a file:

import biobear as bb

session = bb.connect()
df = session.sql("""
    SELECT * FROM gff_scan('test.gff')
""").to_polars()

print(df)

This will print:

┌─────────┬────────┬──────┬───────┬───┬───────┬────────┬───────┬───────────────────────────────────┐
│ seqname ┆ source ┆ type ┆ start ┆ … ┆ score ┆ strand ┆ phase ┆ attributes                        │
│ ---     ┆ ---    ┆ ---  ┆ ---   ┆   ┆ ---   ┆ ---    ┆ ---   ┆ ---                               │
│ str     ┆ str    ┆ str  ┆ i64   ┆   ┆ f32   ┆ str    ┆ str   ┆ list[struct[2]]                   │
╞═════════╪════════╪══════╪═══════╪═══╪═══════╪════════╪═══════╪═══════════════════════════════════╡
│ chr1    ┆ .      ┆ gene ┆ 1     ┆ … ┆ null  ┆ +      ┆ null  ┆ [{"gene_id","1"}, {"gene_name","… │
│ chr1    ┆ .      ┆ gene ┆ 200   ┆ … ┆ null  ┆ +      ┆ null  ┆ [{"gene_id","2"}, {"gene_name","… │
└─────────┴────────┴──────┴───────┴───┴───────┴────────┴───────┴───────────────────────────────────┘

Using a Session w/ Exon

BioBear exposes a session object that can be used with exon to work with files directly in SQL, then eventually convert them to a DataFrame if needed.

See the BioBear Docs for more information, but in short, you can use the session like this:

import biobear as bb

session = bb.connect()

session.sql("""
CREATE EXTERNAL TABLE gene_annotations_s3 STORED AS GFF LOCATION 's3://BUCKET/TenflaDSM28944/IMG_Data/Ga0451106_prodigal.gff'
""")

df = session.sql("""
    SELECT * FROM gene_annotations_s3 WHERE score > 50
""").to_polars()
df.head()
# shape: (5, 9)
# ┌──────────────┬─────────────────┬──────┬───────┬───┬────────────┬────────┬───────┬───────────────────────────────────┐
# │ seqname      ┆ source          ┆ type ┆ start ┆ … ┆ score      ┆ strand ┆ phase ┆ attributes                        │
# │ ---          ┆ ---             ┆ ---  ┆ ---   ┆   ┆ ---        ┆ ---    ┆ ---   ┆ ---                               │
# │ str          ┆ str             ┆ str  ┆ i64   ┆   ┆ f32        ┆ str    ┆ str   ┆ list[struct[2]]                   │
# ╞══════════════╪═════════════════╪══════╪═══════╪═══╪════════════╪════════╪═══════╪═══════════════════════════════════╡
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 2     ┆ … ┆ 54.5       ┆ -      ┆ 0     ┆ [{"ID",["Ga0451106_01_2_238"]}, … │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 228   ┆ … ┆ 114.0      ┆ -      ┆ 0     ┆ [{"ID",["Ga0451106_01_228_941"]}… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 1097  ┆ … ┆ 224.399994 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_1097_2257"… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 2261  ┆ … ┆ 237.699997 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_2261_3787"… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 3784  ┆ … ┆ 114.400002 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_3784_4548"… │
# └──────────────┴─────────────────┴──────┴───────┴───┴────────────┴────────┴───────┴───────────────────────────────────┘

Ecosystem

BioBear aims to make it simple to move easily to and from different prominent data tools in Python. Generally, if the tool can read Arrow, it can read BioBear's output. To call out a few examples here:

Polars

The session results and Reader objects can be converted to a Polars DataFrame.

import biobear as bb

session = bb.connect()

df = session.sql("""
    SELECT * FROM gff_scan('test.gff')
""").to_polars()

Known Issues

For GenBank and mzML, the naive SELECT * will cause an error, because Polars doesn't support all Arrow types -- Map being the specific offender here. In these cases, select the fields from the map individually. Alternatively, you can first convert the table to a Pandas DataFrame.

DuckDB

BioBear can also be used to read files into a duckdb database.

import biobear as bb
import duckdb

session = bb.connect()

session.sql("""
    CREATE EXTERNAL TABLE gene_annotations STORED AS GFF LOCATION 'python/tests/data/test.gff'
""")

result = session.sql("""
    SELECT * FROM gene_annotations
""")

gff_table_arrow_table = result.to_arrow()

duckdb_conn = duckdb.connect()

result = duckdb_conn.execute('SELECT * FROM gff_table_arrow_table').fetchall()
print(result)

Performance

Please see the exon's performance metrics for thorough benchmarks, but in short, biobear is generally faster than other Python libraries for reading bioinformatic file formats.

For example, here's quick benchmarks for reading one FASTA file with 1 million records and reading 5 FASTA files each with 1 million records for the local file system on an M1 MacBook Pro:

Library 1 file (s) 5 files (s)
BioBear 4.605 s ± 0.166 s 6.420 s ± 0.113 s
BioPython 6.654 s ± 0.003 s 34.254 s ± 0.053 s

The larger difference multiple files is due to biobear's ability to read multiple files in parallel.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

biobear-0.21.2.tar.gz (806.5 kB view details)

Uploaded Source

Built Distributions

biobear-0.21.2-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl (19.8 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.21.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.21.2-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl (19.8 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.21.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.21.2-cp312-none-win_amd64.whl (19.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

biobear-0.21.2-cp312-cp312-manylinux_2_28_aarch64.whl (19.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

biobear-0.21.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

biobear-0.21.2-cp312-cp312-macosx_11_0_arm64.whl (17.9 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

biobear-0.21.2-cp312-cp312-macosx_10_12_x86_64.whl (19.3 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

biobear-0.21.2-cp311-none-win_amd64.whl (19.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

biobear-0.21.2-cp311-cp311-manylinux_2_28_aarch64.whl (19.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

biobear-0.21.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

biobear-0.21.2-cp311-cp311-macosx_11_0_arm64.whl (17.9 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

biobear-0.21.2-cp311-cp311-macosx_10_12_x86_64.whl (19.3 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

biobear-0.21.2-cp310-none-win_amd64.whl (19.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

biobear-0.21.2-cp310-cp310-manylinux_2_28_aarch64.whl (19.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

biobear-0.21.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

biobear-0.21.2-cp310-cp310-macosx_11_0_arm64.whl (17.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

biobear-0.21.2-cp310-cp310-macosx_10_12_x86_64.whl (19.3 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

biobear-0.21.2-cp39-none-win_amd64.whl (19.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

biobear-0.21.2-cp39-cp39-manylinux_2_28_aarch64.whl (19.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

biobear-0.21.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

biobear-0.21.2-cp39-cp39-macosx_11_0_arm64.whl (17.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

biobear-0.21.2-cp39-cp39-macosx_10_12_x86_64.whl (19.3 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

File details

Details for the file biobear-0.21.2.tar.gz.

File metadata

  • Download URL: biobear-0.21.2.tar.gz
  • Upload date:
  • Size: 806.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for biobear-0.21.2.tar.gz
Algorithm Hash digest
SHA256 0ada0803f19a833f0ebaaff52d63f2492ded4f28c920c95eb6e891584610ec1c
MD5 171e8c9e8ab6122ebbf71613adeb8017
BLAKE2b-256 f54ebe52ae9582286d1a0344d8ff661d244826ac6d2b982297ebf4fa4d07b9b1

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 33b6d5e6206cc0952c90eda2349633e387e30838a52c3075b0d430fa63cfa394
MD5 cfc3da945582205a591cdc9099fea80a
BLAKE2b-256 a960ba2af8a1296142b23d5ff6781f5ecd815ae71709afc635c4150c4bfe674b

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e926c600ab587e6584288a5e00ac0ccaa3331b16a431d0bbdf727824ed9bee2
MD5 a380e08669078e218b70edf49a0ea545
BLAKE2b-256 0067f6363fefe03a541760e7ca411c4e92b5a3558db83613aa03ce042a7a62e4

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6cd707ee32cf1dff934d4db8c9db39e42e02a0e96663d3f64564eb7296eb9ce0
MD5 dbb718f2e3eece8d53fe6dfcc0dc5ddc
BLAKE2b-256 1c78c94bb5ebc2d48cb6560512fd0779c875258dbb274e90130aafcebeea0af5

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 429a9fcda3f8262535efe894b3b3f07355071072f86af39cea73f79c64ef7478
MD5 a64dd407f996a30d8cd2477cbd2575f9
BLAKE2b-256 853222fe9fb6a1c5ce2d14b4d67f0d62ba02f3fb400af262c6f3dbc9314f60ff

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 563ddafcf91e736be910a924762d446fb7d76db07727922c57d799355b041109
MD5 1ecfb16931db6602a075131d8e757448
BLAKE2b-256 a4fa32d53b8e57b752d33f852962786f110fe7d2bc9695cff7bdd33eab8c6a0b

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 11f3cbefab8956d64d74848c83b352a2a7519fc912947c26320d75bca25c2321
MD5 87da7a5b5948166892979fdd1cad1263
BLAKE2b-256 38d9a0e8c0a989b492e439d84dda8f0b5f03dee3815a320e984d6143536ae003

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c631e355cf24feb38abd11e18c9b4faa04602b3c51567d541b7d0f1c54169b8
MD5 99d4d2cbb25eb510100b7705952de4cc
BLAKE2b-256 8827728a0cd3cd37dab4012ec491f1d4c06601d8c88fc8f475e407df1ab6691d

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 28c1b7100cf3c7bd9324fd2a63e31344fe6a6d2ee702460ba5f66c7994cf48df
MD5 73f3df38bb240b18078778ca89542bdf
BLAKE2b-256 680ac045e6a54f56f740556f1a0b1a357811a7013b2a5b20190cbbbd4b7b74e8

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 59d9ad8fb1fe5a6f54ed96814a600b2154f08c7fabd478aad5d0faf6425ae177
MD5 b1b2bd6451225565b81018789c71e0dc
BLAKE2b-256 4d5ce345c3dc49cb5147c71eb0b228845fc71e9204099f0f19d899f2f4e9ec2f

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 297b09ffea4dcd598ae0630f5dca3a980eb874d91ad7aaa51ed4a30ed7779fb0
MD5 e984b055910e0478fabe4c7aba6a305c
BLAKE2b-256 2f496e25c20b7956177454013f014053bb49b65a62fa08de4a5b2e9d78f9bde0

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9c3e622737f86fa7180aba7cb22e6707b1eb69bf453b753e1e99dc2949e84080
MD5 7076cc72dc68a083b20b0cdf52f00dad
BLAKE2b-256 cd3f117d33c24a58848e6117eeeef21eef113e6f79243e5dd1cee7658252fc46

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 535ba17468cd0e7e09d1109c4407ee009d72c82c66249b1435cbc2b59ad902de
MD5 a77c3f89f73182c2b6c910305925f383
BLAKE2b-256 c3c69220f1ae8e691c13a484394a88261a7be1238a9db552da14212933f9d703

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ae96de9fd927da335828b755edcaed15bbe0c483cd635d29d1d6fe9acccaec1b
MD5 c346256651de287d1ecf3b03dbdb48ec
BLAKE2b-256 6e7ee3acbd16030fdebe07d817ddbb511d39892d73480581239feeff7ee23cb7

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 66846a20dc95a0492ab8612dbcfcf92a504bfb9e03005fae6193dedffd9d4c91
MD5 eec03fbf5e90a17f02f6992461209bc1
BLAKE2b-256 9be7333ca383f19e994c216865ce6e510ccf3f4eab3b24e8bdb4ba1f3cc69af3

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 e1a6d203f4101615969d32e055993ab7cdcb03cdc60cc997720ab68280472d0f
MD5 ffd0a8e35d777be8a80967c1bf4048a2
BLAKE2b-256 2b590fec0ff69177b4d9f7d1606bd07323c78682bd2980e573aa501cb08bc415

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 eb97bd464aba4238aa342f7d2e370b810906c6404c795f345b730f6b1e061574
MD5 af57c532d4a8a042b421953c436f83a8
BLAKE2b-256 81c08d2429cda4d563e81cd98168db0c54a906162e402eaea3300ac23a90ea95

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9632f5cc2acce598f51eca62e469f1e66baaf494b19f60bfea8f248e7c9003d6
MD5 5ed9b272a89f018d51cca7d2debe9241
BLAKE2b-256 9a97bb98326ba6c5f9f1083286a8a94155a9252ef49af3401e6579e1d74dab51

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9554b2cf8205e26b3077dcacb09e9d85eb1aeed6a5d19394fbb8cfa9f29d2052
MD5 0c67a2d729aed853403864abf66f60cf
BLAKE2b-256 7618b8b8611acb91b40abaee4b83720a1bbdcba675a253113f455b874dce4990

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2ef83c34e757b640a4786f884b5346bd5868e12c3ee03e0e3b70b5c4d3cfb518
MD5 e304aac6b3c3e079cf3e30b10f79b36d
BLAKE2b-256 d92fc3346ead36c154cab71bc893a22104ec952eed7b60f7c183461a1663f39e

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 124751d9d80d7744cb1ec23cb78a1829f2d9e79404e7f0858296d883b1789f87
MD5 e8ae759c23695de99d0e9779f8da2205
BLAKE2b-256 d5ad1fc7332e587d46ef939c9048cebc22d0b99d56dea66094a591133dbdaac3

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1624a7a90760ace1690a8c601ae42b95dd485b448f7bd66eaeb31a8cad1285a8
MD5 7885c42325c48a46a036f5992138e04f
BLAKE2b-256 baf909a884ca78d758e1c4cb1fbc775c0e7c4ba8634ff55fbb9e0ac96a1a0150

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dcaa5a6d294263b717b148c8bd2450c9e262512722f0907f7e003e386118f70d
MD5 5f1dd887a3b9fce562fa759867d783e1
BLAKE2b-256 2d49febc0418603f97940489e8fae524fe48c7ec57bc124f2883da5a94099044

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 03f99c22c956c24a0a041be6ca3e5db0027dea7fdd3ae454c51926e5f6580d8a
MD5 cc4536d93bf02d71ad9d76821f3ae4c8
BLAKE2b-256 e7312f895b570a2ebcfdc07be94c561390ccf603b4ba5cf07463a39e4ac42f84

See more details on using hashes here.

File details

Details for the file biobear-0.21.2-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.21.2-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2f5ffa0d9f87ec78e773faf82f5eeb79919cbffa8fe818afc8eeceb796b89eb0
MD5 f4d95a7fb470e973c983641a26ef4eaf
BLAKE2b-256 147cd4b6817652605ce3c304e384aef30ce7107cf98c6422196de50dad72c67f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page