Skip to main content

An efficient MPO implementation of DMRG for quantum chemistry.

Project description

Documentation Status Build Status License: GPL v3 PyPI version

block2

The block2 code provides an efficient highly scalable implementation of the Density Matrix Renormalization Group (DMRG) for quantum chemistry, based on Matrix Product Operator (MPO) formalism.

The block2 code is developed as an improved version of StackBlock, where the low-level structure of the code has been completely rewritten. The block2 code is developed and maintained in Garnet Chan group at Caltech.

Main contributors:

  • Huanchen Zhai @hczhai: DMRG and parallelization
  • Henrik R. Larsson @h-larsson: DMRG-MRCI/MRPT, large site, Green's function in frequency and time for finite temp.
  • Seunghoon Lee @seunghoonlee89: Stochastic perturbative DMRG
  • Zhi-Hao Cui @zhcui: User interface

If you find this package useful for your scientific research, please cite the work as:

  • H. Zhai, H. R. Larsson, S. Lee, Z.-H. Cui, T. Zhu, C. Sun, L. Peng, R. Peng, K. Liao, J. Tölle, J. Yang, S. Li, and G. K.-L. Chan. Block2: A comprehensive open source framework to develop and apply state-of-the-art DMRG algorithms in electronic structure and beyond. The Journal of Chemical Physics 159, 234801 (2023). doi: 10.1063/5.0180424

For parallel ab initio DMRG, please cite

  • H. Zhai, and G. K.-L. Chan. Low communication high performance ab initio density matrix renormalization group algorithms. The Journal of Chemical Physics 154, 224116 (2021). doi: 10.1063/5.0050902.

For large site DMRG-MRCI/MRPT, please cite

  • H. R. Larsson, H. Zhai, K. Gunst, and G. K.-L. Chan. Matrix product states with large sites. Journal of Chemical Theory and Computation 18, 749-762 (2022). doi: 10.1021/acs.jctc.1c00957.

For DMRG with spin-orbit-coupling, please cite

  • H. Zhai, and G. K.-L. Chan. A comparison between the one- and two-step spin-orbit coupling approaches based on the ab initio Density Matrix Renormalization Group. The Journal of Chemical Physics 157, 164108 (2022). doi: 10.1063/5.0107805.

You can find a bibtex file in CITATIONS.bib.

One can install block2 using pip (note: for very new Python versions, the --extra-index-url option of pip is required, see below for installing the developement version of block2):

  • OpenMP-only version (no MPI dependence)

    pip install block2
    
  • Hybrid openMP/MPI version (requiring openMPI 5.0.x for block2-mpi >= 0.5.3 or 4.1.x for block2-mpi <= 0.5.2 and block2-mpi <= 0.5.3rc19)

    pip install block2-mpi
    
  • Binary format is prepared via pip for python 3.8, 3.9, 3.10, 3.11, 3.12, and 3.13 with macOS (x86 and arm64, no-MPI), Linux (no-MPI/openMPI), or Windows (x86, no-MPI). If these binaries have some problems, you can use the --no-binary option of pip to force building from source (for example, pip install block2 --no-binary block2).

  • One should only install one of block2 and block2-mpi. block2-mpi covers all features in block2, but its dependence on mpi library can sometimes be difficult to deal with. Some guidance for resolving environment problems can be found in issue #7 and here.

  • To install the most recent development version, use:

    pip install block2==<version> --extra-index-url=https://block-hczhai.github.io/block2-preview/pypi/
    pip install block2-mpi==<version> --extra-index-url=https://block-hczhai.github.io/block2-preview/pypi/
    

    where <version> can be some development version number like 0.5.3rc20 (see https://github.com/block-hczhai/block2-preview/tags for a complete list of version numbers. The letter p is not needed). To force reinstalling an updated version, you may consider pip options --upgrade --force-reinstall --no-deps --no-cache-dir.

The detailed instructions on manual installation can be found here.

To run a DMRG calculation using the command line interface, please use the following command:

block2main dmrg.conf > dmrg.out

where dmrg.conf is the StackBlock style input file and dmrg.out contains the outputs. Example input files can be found here.

For DMRGSCF calculation, please have a look at here.

For a list of DMRG references for methods implemented in block2, see: https://block2.readthedocs.io/en/latest/user/references.html

Documentation: https://block2.readthedocs.io/en/latest/

Tutorial (python interface): https://block2.readthedocs.io/en/latest/tutorial/qc-hamiltonians.html

Example script for models: Fermi-Hubbard, Bose-Hubbard, Hubbard-Holstein, SU(2) Heisenberg, SU(3) Heisenberg, t-J.

Source code: https://github.com/block-hczhai/block2-preview

For a simplified implementation of ab initio DMRG, see pyblock3. Data can be imported and exported between block2 and pyblock3, see https://github.com/block-hczhai/block2-preview/discussions/35.

Features

  • State symmetry
    • U(1) particle number symmetry
    • SU(2) or U(1) spin symmetry (spatial orbital)
    • No spin symmetry (general spin orbital)
    • Abelian point group symmetry
    • Translational (K point) / Lz symmetry
  • Sweep algorithms (1-site / 2-site / 2-site to 1-site transition)
    • Ground-State DMRG
      • Decomposition types: density matrix / SVD
      • Noise types: wavefunction / density matrix / perturbative
    • Multi-Target Excited-State DMRG
      • State-averaged / state-specific
    • MPS compression / addition
    • Expectation
    • Imaginary / real time evolution
      • Hermitian / non-Hermitian Hamiltonian
      • Time-step targeting method
      • Time dependent variational principle method
    • Green's function
  • Finite-Temperature DMRG (ancilla approach)
    • Green's function
    • Time evolution
  • Low-Temperature DMRG (partition function approach)
  • Particle Density Matrix (1-site / 2-site)
    • 1PDM / 2PDM / 3PDM / 4PDM
    • Transition 1PDM / 2PDM / 3PDM / 4PDM
    • Spin / charge correlation
  • Quantum Chemistry MPO
    • Normal-Complementary (NC) partition
    • Complementary-Normal (CN) partition
    • Conventional scheme (switch between NC and CN near the middle site)
  • Symbolic MPO simplification
  • MPS initialization using occupation number
  • Supported matrix representation of site operators
    • Block-sparse (outer) / dense (inner)
    • Block-sparse (outer) / elementwise-sparse (CSR, inner)
  • Fermionic MPS algebra (non-spin-adapted only)
  • Determinant/CSF coefficients of MPS
    • Extracting Determinant/CSF coefficients from MPS
    • Constructing MPS from Determinant/CSF coefficients
  • Multi-level parallel DMRG
    • Parallelism over sites (2-site only)
    • Parallelism over sum of MPOs (distributed)
    • Parallelism over operators (distributed/shared memory)
    • Parallelism over symmetry sectors (shared memory)
    • Parallelism within dense matrix multiplications (MKL)
  • DMRG-CASSCF and contracted dynamic correlation
    • DMRG-CASSCF (pyscf / openMOLCAS / forte interface)
    • DMRG-CASSCF nuclear gradients and geometry optimization (pyscf interface, RHF reference only)
    • DMRG-sc-NEVPT2 (pyscf interface, classical approach)
    • DMRG-sc-MPS-NEVPT2 (pyscf interface, MPS compression approximation)
    • DMRG-CASPT2 (openMOLCAS interface)
    • DMRG-cu-CASPT2 (openMOLCAS interface)
    • DMRG-MRDSRG (forte interface)
  • Stochastic perturbative DMRG
  • DMRG with Spin-Orbit Coupling (SOC)
    • 1-step approach (full complex one-MPO and hybrid real/complex two-MPO schemes)
    • 2-step approach
  • Uncontracted dynamic correlation
    • DMRG Multi-Reference Configuration Interaction (MRCI) of arbitrary order
    • DMRG Multi-Reference Averaged Quadratic Coupled Cluster (AQCC)/ Coupled Pair Functional (ACPF)
    • DMRG NEVPT2/3/..., REPT2/3/..., MR-LCC, ...
  • Orbital Reordering
    • Fiedler
    • Genetic algorithm
  • MPS Transformation
    • SU2 to SZ mapping
    • Point group mapping
    • Orbital basis rotation

StackBlock Compatibility

A StackBlock 1.5 compatible user interface can be found at pyblock2/driver/block2main. This script can work as a replacement of the StackBlock binary, with a few limitations and some extensions. The format of the input file dmrg.conf is identical to that of StackBlock 1.5. See docs/driver.md and docs/source/user/basic.rst for detailed documentations for this interface. Examples using this interface can be found at tests/driver.

Instuctions for installing the StackBlock code can be found in here. A list of precompiled binaries of StackBlock can be found in here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

block2-0.5.3.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

block2-0.5.3-cp313-cp313-win_amd64.whl (28.5 MB view details)

Uploaded CPython 3.13 Windows x86-64

block2-0.5.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (192.3 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

block2-0.5.3-cp313-cp313-macosx_14_0_arm64.whl (74.9 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

block2-0.5.3-cp313-cp313-macosx_11_0_universal2.whl (80.3 MB view details)

Uploaded CPython 3.13 macOS 11.0+ universal2 (ARM64, x86-64)

block2-0.5.3-cp312-cp312-win_amd64.whl (28.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

block2-0.5.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (192.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

block2-0.5.3-cp312-cp312-macosx_14_0_arm64.whl (74.9 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

block2-0.5.3-cp312-cp312-macosx_11_0_universal2.whl (80.3 MB view details)

Uploaded CPython 3.12 macOS 11.0+ universal2 (ARM64, x86-64)

block2-0.5.3-cp311-cp311-win_amd64.whl (28.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

block2-0.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (192.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

block2-0.5.3-cp311-cp311-macosx_14_0_arm64.whl (74.4 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

block2-0.5.3-cp311-cp311-macosx_11_0_universal2.whl (79.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ universal2 (ARM64, x86-64)

block2-0.5.3-cp310-cp310-win_amd64.whl (28.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

block2-0.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (191.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

block2-0.5.3-cp310-cp310-macosx_14_0_arm64.whl (74.4 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

block2-0.5.3-cp310-cp310-macosx_12_0_x86_64.whl (79.7 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

block2-0.5.3-cp39-cp39-win_amd64.whl (28.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

block2-0.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (191.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

block2-0.5.3-cp39-cp39-macosx_14_0_arm64.whl (74.4 MB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

block2-0.5.3-cp39-cp39-macosx_12_0_x86_64.whl (79.7 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

block2-0.5.3-cp38-cp38-win_amd64.whl (28.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

block2-0.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (191.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

block2-0.5.3-cp38-cp38-macosx_14_0_arm64.whl (74.4 MB view details)

Uploaded CPython 3.8 macOS 14.0+ ARM64

block2-0.5.3-cp38-cp38-macosx_12_0_x86_64.whl (79.7 MB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

block2-0.5.3-cp37-cp37m-win_amd64.whl (28.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

block2-0.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (193.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

block2-0.5.3-cp37-cp37m-macosx_11_0_x86_64.whl (78.9 MB view details)

Uploaded CPython 3.7m macOS 11.0+ x86-64

File details

Details for the file block2-0.5.3.tar.gz.

File metadata

  • Download URL: block2-0.5.3.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for block2-0.5.3.tar.gz
Algorithm Hash digest
SHA256 d4f7c6add2497d7bd063394b14de560c8712eb386663b863f7c981288792842a
MD5 367c8413ba55c6f73594a633616ebf40
BLAKE2b-256 3fd1a3b4ba9a6c6e2a52383c9d2eb874df2dc8850cf970ccbb2e8dce805dc7e1

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: block2-0.5.3-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 28.5 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for block2-0.5.3-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 cf718608f753bc901071e6c7d7c9682ee5dcbe00f0536980fd2320311bf326d0
MD5 697d8082cf3ffb90b03bb2be626b9d85
BLAKE2b-256 1933342d78c43c5b14fce7b14b1e867e0829faa6b0605ee83e03753b0c4ac192

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 10728305642ed7338ab73324f9f8ad09c98555f7831420f66e92f4c6452d198e
MD5 692aa754957bc2c640a4868070c144a2
BLAKE2b-256 644591b05f222ce0d7ac8eec1e320e4ecf4211d377961fcb8214bdbbfdf91b14

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 39c8503d396371b2d791a1637ab4a255c03bda07d9e86db15b55b47f94d68743
MD5 b86d63a9c48017bc13c86ce1d084f6e6
BLAKE2b-256 2b58da03c602781c6bc13be8271475a84555ebfce35da5e17ea91806cf39662f

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp313-cp313-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp313-cp313-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 eff5806e5a454733b267b96e4135151ec20a39566d67ac6dbaa1bfd672cabb96
MD5 e9a8966be6184f94444339628145290f
BLAKE2b-256 ba3bfa423e58ee299b3f896274b2b973d63f7b7fca572b24f66e6a45b63846bd

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: block2-0.5.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 28.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for block2-0.5.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4d50bdf228a4da78dba7a92b98d0257190a06138e041b25f62d3474ba9ea4cc7
MD5 08a5caf277a6fbfca7cc739cf414564e
BLAKE2b-256 cdf15805906dd5e49901a2570ac1d48ff661a3f5a54da873392a2916e1a7e172

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ef2502e77978ba62ec179f6361b043f58661d014f8d8ea4164de6f448134528
MD5 522281adcefff24ae22a18c3ad0c2479
BLAKE2b-256 caab039a46ea6a97f26356277df3d7f66c315d1fba3dd036589257482a1f6267

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 56ee65c84be9e93d30415d13cf85232511686718f616a64d37481fa70aec6a42
MD5 278f794a1af15388a7c9d4354678ddbb
BLAKE2b-256 110c7047e77f35f82f0169037ee5e1c8b5a2b4726c64e24d3713d374146a0ce2

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp312-cp312-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp312-cp312-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 d91a838f909d202cfd3804c0d19e650dec07cd02d7dbf81fcc2f813d2b926eb6
MD5 8f1194ecff605a5691d6929ca51afedc
BLAKE2b-256 854c771903b51bc3ec3ccb19d136bca5926ac59a1b93d393a4f9e8c795294bca

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: block2-0.5.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 28.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for block2-0.5.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e7e65884275146528c67a5718caa1ed3ed54312a728c0d873865e341e86f38a3
MD5 ade219d682a20aadc0394ee41b9040e3
BLAKE2b-256 5521b2b346933fa78a261bd8aaf1d5be8a405bbe831c9d379e67e78e5bb02384

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cd94dcecb02071c70e77c2c5339452578de6284989c3a937fcdfbbb0b61c59e6
MD5 3d7c6dc5970fe69b8b811ce063423c20
BLAKE2b-256 8063da5c6bd3c158e13775d88ffcd231940673d685384a2e926bc2cf9ccbd1b2

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 aaaf3bafce8f1851dba26eeb21b81370996ce60616a4fd360055eb538566241e
MD5 b2e493545593d2193b2442efdd9985fd
BLAKE2b-256 c6b2cf9aa8d3cae556065a0670e24d6116b4beb91587911b62dd4f0316c7b683

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp311-cp311-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp311-cp311-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 18ae47a5a08456728c17a609368b97ec4dde91ed602f24d381de670e75ca3125
MD5 4c28883faf6dabcb427bd0e324a45da4
BLAKE2b-256 68633d2e00b292d5ad87e9410dd6ac3dfdc090f0e3880838d89ab1c6abbd2781

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: block2-0.5.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 28.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for block2-0.5.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e2cd6e4195198b3fcc75fcac4e8e7148dbfb57e2ea43e40054353d83a10ab7cd
MD5 f0287d2e610b8bd86a6e6d81cddf092e
BLAKE2b-256 f4e954409ed2c1faa8f7423e885dba755f882d311d5fda4577269ee0e9c345f8

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce4099ae2d7115c76e87303eedaa7347c2750332b96ea38e1d601d726f42a966
MD5 d4549e61cab43e2464d452855d0c2b44
BLAKE2b-256 d5f721eebefd0975eba7e09400f28d734c0de6eb2440408b27e5bb2e27ea4bcd

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 065c875ca4befc19522fb8a2d59721892d5a239156722b0a6a2997d656732501
MD5 126e3908f2873b982039337aa0ae3882
BLAKE2b-256 98f528d153d16ad1b1e55e96f64a407791ec1fe5e4c83dfcee6de33aad58bce0

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 f3b359876c0f9742a2ff629914f9ac2a2f16e1da9e6f13983f2b482a33c6bf27
MD5 cf1bea0361a333ed2bf2570bb93d783f
BLAKE2b-256 c5448861a8979df8a0e6078e62835c7f1966f7783f3692b53788ffee46cf7679

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: block2-0.5.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 28.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for block2-0.5.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4a341a031ffa69769b95ccbf689c5f50c81158901fea7722049e2dbcc9ae3e81
MD5 c5a8fa0eb046ad985dee21f273c6a911
BLAKE2b-256 a5d0c28eec79c5e67465386a744e7b9fb565a788a16fd2c48c1fb2bc0dccf7eb

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd446feec658125edcfbcbb2ad2049d9148e4466822a27022bf0b664b8db2f57
MD5 f9c72dadad1b05d3569bd2a067004944
BLAKE2b-256 71752d06184287f7da170da0cd0fe8c715d09ad8c8189bb83d66211cc5eb05f8

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 3ca3c7813faceed705178dfa702e8165d686f5ed1a831c009b38bff0c7af8ca2
MD5 d3073eeedcb6004d7a3518f9a1f230a8
BLAKE2b-256 c1c8e81b1bb738905a5c21d1e334fedac68afebecc471dc1efed7a977670c13c

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 6c6259a6c0f401ccd4f053bbd6d0d4a83d6a4e75a30ce275865ae5fb434992be
MD5 5f52a45ed1c5a2f79d7a140dd6c2de8e
BLAKE2b-256 2155fca4109be8a8b96100c84d59a763f0060b315d1ca501a8697044e402e80e

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: block2-0.5.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 28.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for block2-0.5.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4d8df1745f2d2f583fb78d235934fdcfa3bf7914970892632d3263e19a0f0719
MD5 7fbdf5a5020e6cb18313a0a8d9d4587e
BLAKE2b-256 50af885fa690367dbe6341cda4d6e32756062268ec33dc62c00dd529887f2461

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b0f1f861aed10234a6f15a0579dc259cfb844f998bedeb9334d008e500e2a117
MD5 d13b984cd48ed543f8c5108b361e9c00
BLAKE2b-256 b86c5d92846345004e385471ff7b3df5e1bc774842351727dc5d8b2777f467fe

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp38-cp38-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp38-cp38-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 8bd045adbec596e1c467b11753e5bfef0192dd34b76fccad2fe4d2cb40476504
MD5 92f976b2dc6f014693800f92f11dd1a4
BLAKE2b-256 d270bcf58222bcdcb15855c12ea1cf478d511d4afcba856ad78ff321f137bc97

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 aece90df33c4dfc033288944d1f3db241f43ff69e6ddaa1cc78d35f95a77132d
MD5 cec018388fdad7605eb721c3cfca4fae
BLAKE2b-256 3c32db458d24f00f2f05f650731d3e600854ccd337448a9185d8b2c2e43fc7d7

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: block2-0.5.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 28.1 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for block2-0.5.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1d275af02b6f0ab421526d8ae58b357f57524aec6fe459e34ee202feb2678c95
MD5 d381459470a4f8d443f9cd4ba345a65c
BLAKE2b-256 0d94f7fcf76b67736b13740820d457c471c86aabf76540bb6c11e1006067fd52

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a06be002525605401689c4a146b831a3a2980bcd24fba3f531c3fd831155eb03
MD5 d933a7622d4df774bf034b6de1476f0f
BLAKE2b-256 9c25f292a4ca44f2cb1e6db1456dd7f16a93de99f4833ce73a4331465f560806

See more details on using hashes here.

File details

Details for the file block2-0.5.3-cp37-cp37m-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for block2-0.5.3-cp37-cp37m-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 ed6ad7d95701d391d029ed17db54bcc2c479ec05279ab0d23b76de9acb15f3de
MD5 c2e5d1ce6b4976018c433aac53738ee4
BLAKE2b-256 d75365c0e732a6369847f30a2988aab326e91ce3048487625b3d2b70873d6d36

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page