Skip to main content

Boax is a Bayesian Optimization library for JAX.

Project description

Boax: A Bayesian Optimization library for JAX.

tests pypi

Overview | Installation | Getting Started | Documentation

Boax is currently in early alpha and under active development!

Overview

Boax is a composable library of core components for Bayesian Optimization that is designed for flexibility. It comes with low-level interfaces for:

  • Core capabilities (boax.core):
    • Common Distributions
    • Monte-Carlo Samplers
  • Fitting a surrogate model to data (boax.prediction):
    • Model Functions
    • Objective Functions
  • Constructing and optimizing acquisition functions (boax.optimization):
    • Acquisition Functions
    • Optimizer Functions
    • Policy Functions

Installation

You can install the latest released version of Boax from PyPI via:

pip install boax

or you can install the latest development version from GitHub:

pip install git+https://github.com/Lando-L/boax.git

Basic Usage

Here is a basic example of using the Boax API for defining a Gaussian Process model, constructing an Acquisition function, and generating the next batch of data points to query. For more details check out the docs.

  1. Defining a Gaussian Process model:
from boax.prediction import models

model = models.gaussian_process.exact(
  models.means.zero(),
  models.kernels.scaled(
    models.kernels.rbf(1.0), 0.5
  ),
  models.likelihoods.gaussian(1e-4),
  x_train,
  y_train,
)
  1. Constructing an Acquisition function.
from jax import vmap
from boax.optimization import acquisitions

acqf = models.outcome_transformed(
  vmap(model),
  acquisitions.upper_confidence_bound(2.0)
)
  1. Generating the next batch of data points to query.
from jax import numpy as jnp
from jax import random
from boax.core import distributions, samplers
from boax.optimization import optimizers

key = random.key(0)

batch_size, num_results, num_restarts = 1, 100, 10
bounds = jnp.array([[-1.0, 1.0]])

sampler = samplers.halton_uniform(
  distributions.uniform.uniform(bounds[:, 0], bounds[:, 1])
)

optimizer = optimizers.batch(
  optimizers.initializers.q_batch(
    acqf, sampler, batch_size, num_results, num_restarts,
  ),
  optimizers.solvers.scipy(
    acqf, bounds,  
  ),
)

next_x, value = optimizer(key)

Citing Boax

To cite Boax please use the citation:

@software{boax2023github,
  author = {Lando L{\"o}per},
  title = {{B}oax: A Bayesian Optimization library for {JAX}},
  url = {https://github.com/Lando-L/boax},
  version = {0.1.3},
  year = {2023},
}

In the above bibtex entry, the version number is intended to be that from boax/version.py, and the year corresponds to the project's open-source release.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

boax-0.1.3.tar.gz (29.6 kB view details)

Uploaded Source

Built Distribution

boax-0.1.3-py3-none-any.whl (75.8 kB view details)

Uploaded Python 3

File details

Details for the file boax-0.1.3.tar.gz.

File metadata

  • Download URL: boax-0.1.3.tar.gz
  • Upload date:
  • Size: 29.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for boax-0.1.3.tar.gz
Algorithm Hash digest
SHA256 cc6acc91d970918227d8dacdc8bfdaf762101b88c3e46c91bb50daffcb0fce29
MD5 ba37520ba9309977c0ab63155e4719a9
BLAKE2b-256 cf3dcd3130432558319c7760bfc272dfc5d48afea3ae0c6c15c06ce5a4ca71dc

See more details on using hashes here.

File details

Details for the file boax-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: boax-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 75.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for boax-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 2ef8acadc25a7795279d19830aba476850c37214e24c9cb7b26b65b8ef217b4d
MD5 c1a3891f4fa86410555db4a7ddd21dbe
BLAKE2b-256 c9e70921d50758a663e57eb08b08a1ab1c203b60df3b6f5a02af8607f88e5dc8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page