Skip to main content

Fast NumPy array functions written in C

Project description

Bottleneck is a collection of fast NumPy array functions written in C.

Let’s give it a try. Create a NumPy array:

>>> import numpy as np
>>> a = np.array([1, 2, np.nan, 4, 5])

Find the nanmean:

>>> import bottleneck as bn
>>> bn.nanmean(a)
3.0

Moving window mean:

>>> bn.move_mean(a, window=2, min_count=1)
array([ 1. ,  1.5,  2. ,  4. ,  4.5])

Benchmark

Bottleneck comes with a benchmark suite:

>>> bn.bench()
Bottleneck performance benchmark
    Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4
    Speed is NumPy time divided by Bottleneck time
    NaN means approx one-fifth NaNs; float64 used

              no NaN     no NaN      NaN       no NaN      NaN
               (100,)  (1000,1000)(1000,1000)(1000,1000)(1000,1000)
               axis=0     axis=0     axis=0     axis=1     axis=1
nansum         29.7        1.4        1.6        2.0        2.1
nanmean        99.0        2.0        1.8        3.2        2.5
nanstd        145.6        1.8        1.8        2.7        2.5
nanvar        138.4        1.8        1.8        2.8        2.5
nanmin         27.6        0.5        1.7        0.7        2.4
nanmax         26.6        0.6        1.6        0.7        2.5
median        120.6        1.3        4.9        1.1        5.7
nanmedian     117.8        5.0        5.7        4.8        5.5
ss             13.2        1.2        1.3        1.5        1.5
nanargmin      66.8        5.5        4.8        3.5        7.1
nanargmax      57.6        2.9        5.1        2.5        5.3
anynan         10.2        0.3       52.3        0.8       41.6
allnan         15.1      196.0      156.3      135.8      111.2
rankdata       45.9        1.2        1.2        2.1        2.1
nanrankdata    50.5        1.4        1.3        2.4        2.3
partition       3.3        1.1        1.6        1.0        1.5
argpartition    3.4        1.2        1.5        1.1        1.6
replace         9.0        1.5        1.5        1.5        1.5
push         1565.6        5.9        7.0       13.0       10.9
move_sum     2159.3       31.1       83.6      186.9      182.5
move_mean    6264.3       66.2      111.9      361.1      246.5
move_std     8653.6       86.5      163.7      232.0      317.7
move_var     8856.0       96.3      171.6      267.9      332.9
move_min     1186.6       13.4       30.9       23.5       45.0
move_max     1188.0       14.6       29.9       23.5       46.0
move_argmin  2568.3       33.3       61.0       49.2       86.8
move_argmax  2475.8       30.9       58.6       45.0       82.8
move_median  2236.9      153.9      151.4      171.3      166.9
move_rank     847.1        1.2        1.4        2.3        2.6

You can also run a detailed benchmark for a single function using, for example, the command:

>>> bn.bench_detailed("move_median", fraction_nan=0.3)

Only arrays with data type (dtype) int32, int64, float32, and float64 are accelerated. All other dtypes result in calls to slower, unaccelerated functions. In the rare case of a byte-swapped input array (e.g. a big-endian array on a little-endian operating system) the function will not be accelerated regardless of dtype.

Where

download

https://pypi.python.org/pypi/Bottleneck

docs

https://bottleneck.readthedocs.io

code

https://github.com/pydata/bottleneck

mailing list

https://groups.google.com/group/bottle-neck

License

Bottleneck is distributed under a Simplified BSD license. See the LICENSE file and LICENSES directory for details.

Install

Bottleneck provides binary wheels on PyPI for all the most common platforms. Binary packages are also available in conda-forge. We recommend installing binaries with pip, uv, conda or similar - it’s faster and easier than building from source.

Installing from source

Requirements:

Bottleneck

Python >=3.9; NumPy 1.16.0+

Compile

gcc, clang, MinGW or MSVC

Unit tests

pytest

Documentation

sphinx, numpydoc

To install Bottleneck on Linux, Mac OS X, et al.:

$ pip install .

To install bottleneck on Windows, first install MinGW and add it to your system path. Then install Bottleneck with the command:

$ python setup.py install --compiler=mingw32

Unit tests

After you have installed Bottleneck, run the suite of unit tests:

In [1]: import bottleneck as bn

In [2]: bn.test()
============================= test session starts =============================
platform linux -- Python 3.7.4, pytest-4.3.1, py-1.8.0, pluggy-0.12.0
hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/home/chris/code/bottleneck/.hypothesis/examples')
rootdir: /home/chris/code/bottleneck, inifile: setup.cfg
plugins: openfiles-0.3.2, remotedata-0.3.2, doctestplus-0.3.0, mock-1.10.4, forked-1.0.2, cov-2.7.1, hypothesis-4.32.2, xdist-1.26.1, arraydiff-0.3
collected 190 items

bottleneck/tests/input_modification_test.py ........................... [ 14%]
..                                                                      [ 15%]
bottleneck/tests/list_input_test.py .............................       [ 30%]
bottleneck/tests/move_test.py .................................         [ 47%]
bottleneck/tests/nonreduce_axis_test.py ....................            [ 58%]
bottleneck/tests/nonreduce_test.py ..........                           [ 63%]
bottleneck/tests/reduce_test.py ....................................... [ 84%]
............                                                            [ 90%]
bottleneck/tests/scalar_input_test.py ..................                [100%]

========================= 190 passed in 46.42 seconds =========================
Out[2]: True

If developing in the git repo, simply run py.test

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bottleneck-1.5.0.tar.gz (104.2 kB view details)

Uploaded Source

Built Distributions

bottleneck-1.5.0-cp313-cp313t-win_amd64.whl (113.7 kB view details)

Uploaded CPython 3.13tWindows x86-64

bottleneck-1.5.0-cp313-cp313t-win32.whl (109.4 kB view details)

Uploaded CPython 3.13tWindows x86

bottleneck-1.5.0-cp313-cp313t-musllinux_1_2_x86_64.whl (386.4 kB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ x86-64

bottleneck-1.5.0-cp313-cp313t-musllinux_1_2_aarch64.whl (375.5 kB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ ARM64

bottleneck-1.5.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (372.1 kB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ ARM64

bottleneck-1.5.0-cp313-cp313t-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (376.5 kB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

bottleneck-1.5.0-cp313-cp313t-macosx_11_0_arm64.whl (100.9 kB view details)

Uploaded CPython 3.13tmacOS 11.0+ ARM64

bottleneck-1.5.0-cp313-cp313-win_amd64.whl (112.2 kB view details)

Uploaded CPython 3.13Windows x86-64

bottleneck-1.5.0-cp313-cp313-win32.whl (107.9 kB view details)

Uploaded CPython 3.13Windows x86

bottleneck-1.5.0-cp313-cp313-musllinux_1_2_x86_64.whl (373.4 kB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

bottleneck-1.5.0-cp313-cp313-musllinux_1_2_aarch64.whl (361.4 kB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

bottleneck-1.5.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (358.0 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

bottleneck-1.5.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (362.8 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

bottleneck-1.5.0-cp313-cp313-macosx_11_0_arm64.whl (99.7 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

bottleneck-1.5.0-cp312-cp312-win_amd64.whl (112.1 kB view details)

Uploaded CPython 3.12Windows x86-64

bottleneck-1.5.0-cp312-cp312-win32.whl (107.9 kB view details)

Uploaded CPython 3.12Windows x86

bottleneck-1.5.0-cp312-cp312-musllinux_1_2_x86_64.whl (373.3 kB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

bottleneck-1.5.0-cp312-cp312-musllinux_1_2_aarch64.whl (361.2 kB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

bottleneck-1.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (358.0 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

bottleneck-1.5.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (362.9 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

bottleneck-1.5.0-cp312-cp312-macosx_11_0_arm64.whl (99.6 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

bottleneck-1.5.0-cp311-cp311-win_amd64.whl (112.1 kB view details)

Uploaded CPython 3.11Windows x86-64

bottleneck-1.5.0-cp311-cp311-win32.whl (107.7 kB view details)

Uploaded CPython 3.11Windows x86

bottleneck-1.5.0-cp311-cp311-musllinux_1_2_x86_64.whl (371.8 kB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

bottleneck-1.5.0-cp311-cp311-musllinux_1_2_aarch64.whl (361.3 kB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

bottleneck-1.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (357.1 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

bottleneck-1.5.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (361.2 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

bottleneck-1.5.0-cp311-cp311-macosx_11_0_arm64.whl (99.5 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

bottleneck-1.5.0-cp310-cp310-win_amd64.whl (112.1 kB view details)

Uploaded CPython 3.10Windows x86-64

bottleneck-1.5.0-cp310-cp310-win32.whl (107.7 kB view details)

Uploaded CPython 3.10Windows x86

bottleneck-1.5.0-cp310-cp310-musllinux_1_2_x86_64.whl (367.6 kB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

bottleneck-1.5.0-cp310-cp310-musllinux_1_2_aarch64.whl (357.2 kB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

bottleneck-1.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (353.0 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

bottleneck-1.5.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (357.0 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

bottleneck-1.5.0-cp310-cp310-macosx_11_0_arm64.whl (99.5 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

bottleneck-1.5.0-cp39-cp39-win_amd64.whl (112.1 kB view details)

Uploaded CPython 3.9Windows x86-64

bottleneck-1.5.0-cp39-cp39-win32.whl (107.8 kB view details)

Uploaded CPython 3.9Windows x86

bottleneck-1.5.0-cp39-cp39-musllinux_1_2_x86_64.whl (366.6 kB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

bottleneck-1.5.0-cp39-cp39-musllinux_1_2_aarch64.whl (356.1 kB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ ARM64

bottleneck-1.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (352.3 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

bottleneck-1.5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (356.0 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

bottleneck-1.5.0-cp39-cp39-macosx_11_0_arm64.whl (99.5 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

File details

Details for the file bottleneck-1.5.0.tar.gz.

File metadata

  • Download URL: bottleneck-1.5.0.tar.gz
  • Upload date:
  • Size: 104.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bottleneck-1.5.0.tar.gz
Algorithm Hash digest
SHA256 c860242cf20e69d5aab2ec3c5d6c8c2a15f19e4b25b28b8fca2c2a12cefae9d8
MD5 0ef0defb34b293e5c949bad8fd762cfe
BLAKE2b-256 8082dd20e69b97b9072ed2d26cc95c0a573461986bf62f7fde7ac59143490918

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: bottleneck-1.5.0-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 113.7 kB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bottleneck-1.5.0-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 816c910c5d1fb53adb32581c52a513b206f503ae253ace70cb32d1fe4e45af1d
MD5 208c96479b94da5e8513a2e944bab72c
BLAKE2b-256 3356c05fd1459f2b65941fcaf2697b81fe7d3428855c8e66ab1951eed04a13e2

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp313-cp313t-win32.whl.

File metadata

  • Download URL: bottleneck-1.5.0-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 109.4 kB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bottleneck-1.5.0-cp313-cp313t-win32.whl
Algorithm Hash digest
SHA256 a107ed8b5f998918c24a1e476dbd2dfc3514ab0082df7132c460b01e6ffd8cf4
MD5 af06a3931e5b3c60f298eed4f740f944
BLAKE2b-256 7340ddf00a9b0065d037792d6d2095a4998f15787f2c60fbdcf638767a75c37f

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 bda7c475d4a7e271dbd0b1d4bbce29065edc8891361857105b7212fe383c9a36
MD5 ead1140154b9397087b81884461d13c3
BLAKE2b-256 3f9682837f96be9abd2651565b9becc2f393eefe6d5a515606d662c6962df4b0

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3f3e308416886e29441a0b71bce8f3eb4c7a4943be541fd918244aaf25534d36
MD5 3968b47447e5441988689f61c50722ea
BLAKE2b-256 2438ee90a6e39ed04a8256ecd36baaf1abcea72787214e822675bfdd9b9e896e

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 48c2657102f3288e178cc341f000475a32f49a3cd8b7067e091d5446fa899383
MD5 9861a2f0327e7a1c600c1e647290c5f1
BLAKE2b-256 3ee74f5e212b482529847877558ae770be8eedd985b07d3eb0209dcbdd082595

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp313-cp313t-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp313-cp313t-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c4c94cfcba46adfe71894c63c4b186c847965e73727dbaf5fd9ade41ef38e6e
MD5 3536190e1c06d8bf62b0e5f84ce5d1e5
BLAKE2b-256 a8fa7760ecdb2b37b7097e28a2028a1d5cad6ca0b7eae3806ed795c3a12fd87d

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fc0c0b661005b059fcb09988f8b5e2cd5e9c702e1bed24819ed38f85145140b5
MD5 0d4115aba7bb4580729aced3b9b35cb6
BLAKE2b-256 25b2f3ceb3c177dc9bddfb5e71e0e5949af13c5bfee283740ec81b429a4ce19a

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: bottleneck-1.5.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 112.2 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bottleneck-1.5.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 436a402f0d60a9d6541d7adb0929501225a151ad03b96b756e0b607db6a106f1
MD5 8a432b2f81cb4ee28ee1e90358330708
BLAKE2b-256 8b445e4a73bbe79e16ddbbbdfa1bc6af49b03cbb07aec5e323a14fa3acfc58bd

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp313-cp313-win32.whl.

File metadata

  • Download URL: bottleneck-1.5.0-cp313-cp313-win32.whl
  • Upload date:
  • Size: 107.9 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bottleneck-1.5.0-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 1214a2bf3b36c66e3898aab821ad8366a3062db6f83a8f083e2f799d202e86ea
MD5 3f0168689d590c636a896aa1df360fe7
BLAKE2b-256 13e44c24ec1347c4fa492f757b126be877201ae90bddbcdc9da17cce09de0d55

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 27e38e829497ca0a5eebdb79d3293aaa424f3c31c13806e5c607fd414536b7c3
MD5 56e29c14cd0aa0d6b3589cd21524c2f0
BLAKE2b-256 88e0131f6a6adf8b2e2521e3880a29c5ec0e8ebf57b9e1f37fc2337df5c041b8

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 7967e0189defe9f49025bd6469ff0fe22af5463926af55c7ba1e4592051d8ef8
MD5 3b13334b2c97e945c22f1aa2f13d7c7b
BLAKE2b-256 f97aef9c3d9578c4a627d71d107f5e6f7074b98047536edd8adf0e17be5a0c5b

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1043d95674566063f638582cc8700c24c4427f532f86b9e7cfc9f9ec84abc1ff
MD5 793fa669af6552dd0185aa740bd3b7ad
BLAKE2b-256 568c876c41988a9806020dc9b150f7ad5764a3d14857c11b637285eb7431c25f

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 abc6a24a41f55765215005cec97dd69f41ac747ed0f4d446caa508531957eeda
MD5 78ca46300f79425b0c64f58ed7851e88
BLAKE2b-256 07ed2d807648157a3e94405dc7759e434cbb10784003cd8fa34d992dee02e519

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 97285cfedf3545d9a010b2db2123f9750bf920081e29364cc465052973bd0b5a
MD5 3864ac928027e89675bd9be77f6e838c
BLAKE2b-256 e98c1e1fb2d30a906bc009f3fe070fa188a9593d73e5aa5e815e55edbb96eeec

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: bottleneck-1.5.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 112.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bottleneck-1.5.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f26005740e6ef6013eba8a48241606a963e862a601671eab064b7835cd12ef3d
MD5 459c435def1152500d36e82dbcbb8760
BLAKE2b-256 285a57571a3cd4e356bbd636bb2225fbe916f29adc2235ba3dc77cd4085c91c8

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: bottleneck-1.5.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 107.9 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bottleneck-1.5.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 0dca825048a3076f34c4a35409e3277b31ceeb3cbb117bbe2a13ff5c214bcabc
MD5 05060a731f3e984e1afaa7506a1feca6
BLAKE2b-256 0a40c372f9e59b3ce340d170fbdc24c12df3d2b3c22c4809b149b7129044180b

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 dc8d553d4bf033d3e025cd32d4c034d2daf10709e31ced3909811d1c843e451c
MD5 73c1d2a4f9719f3381aef982dd85eab0
BLAKE2b-256 d5f3a416fed726b81d2093578bc2112077f011c9f57b31e7ff3a1a9b00cce3d3

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3886799cceb271eb67d057f6ecb13fb4582bda17a3b13b4fa0334638c59637c6
MD5 f7e6400e65866be69e156ef2805db1e0
BLAKE2b-256 2b1bbab35ef291b9379a97e2fb986ce75f32eda38a47fc4954177b43590ee85e

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 613165ce39bf6bd80f5307da0f05842ba534b213a89526f1eba82ea0099592fc
MD5 b795a0fde8fafd0dc2fb19ba167d63e5
BLAKE2b-256 59896e0b6463a36fd4771a9227d22ea904f892b80d95154399dd3e89fb6001f8

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f218e4dae6511180dcc4f06d8300e0c81e7f3df382091f464c5a919d289fab8e
MD5 003ded4780b84732e2cae9899ba646bf
BLAKE2b-256 f7d67d1795a4a9e6383d3710a94c44010c7f2a8ba58cb5f2d9e2834a1c179afe

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dbb0f0d38feda63050aa253cf9435e81a0ecfac954b0df84896636be9eabd9b6
MD5 3e0f9cbed066bad41fb1f3a4309a3588
BLAKE2b-256 8e64127e174cec548ab98bc0fa868b4f5d3ae5276e25c856d31d235d83d885a8

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: bottleneck-1.5.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 112.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bottleneck-1.5.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 80ef9eea2a92fc5a1c04734aa1bcf317253241062c962eaa6e7f123b583d0109
MD5 7bcc27f783c59f6079bb63f4def7489e
BLAKE2b-256 1703f89a2eff4f919a7c98433df3be6fd9787c72966a36be289ec180f505b2d5

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: bottleneck-1.5.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 107.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bottleneck-1.5.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 07c2c1aa39917b5c9be77e85791aa598e8b2c00f8597a198b93628bbfde72a3f
MD5 190565f786d9132e69d18e29fc121eca
BLAKE2b-256 29dcf88f6d476d7a3d6bd92f6e66f814d0bf088be20f0c6f716caa2a2ca02e82

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8d123762f78717fc35ecf10cad45d08273fcb12ab40b3c847190b83fec236f03
MD5 4d05ea4840482630fd903c45543d072b
BLAKE2b-256 d3e8d4772b5321cf62b53c792253e38db1f6beee4f2de81e65bce5a6fe78df8e

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 2f5e863a4fdaf9c85416789aeb333d1cdd3603037fd854ad58b0e2ac73be16cf
MD5 a84fc0ef0eb40ea66db5ec223aeb8d45
BLAKE2b-256 bef71a41889a6c0863b9f6236c14182bfb5f37c964e791b90ba721450817fc24

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 16fead35c0b5d307815997eef67d03c2151f255ca889e0fc3d68703f41aa5302
MD5 a02f765aea14ad23e9a590bc4449e05a
BLAKE2b-256 2824e7030fe27c7a9eb9cc8c86a4d74a7422d2c3e3466aecdf658617bea40491

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 049162927cf802208cc8691fb99b108afe74656cdc96b9e2067cf56cb9d84056
MD5 5bf01c19a03a30cfd8b8bd0b68a153ab
BLAKE2b-256 d0ce91b0514a7ac456d934ebd90f0cae2314302f33c16e9489c99a4f496b1cff

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9be5dfdf1a662d1d4423d7b7e8dd9a1b7046dcc2ce67b6e94a31d1cc57a8558f
MD5 467a556abbe92a0146dc7d6e34fad5d4
BLAKE2b-256 fd5ed66b2487c12fa3343013ac87a03bcefbeacf5f13ffa4ad56bb4bce319d09

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: bottleneck-1.5.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 112.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bottleneck-1.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c15a5f009ea72f95d0a35e784c6944af2b6d7dab102341fb3c3412e41ce5adf6
MD5 5f186ce4b60b352ac5edd20eb7d19866
BLAKE2b-256 8cb927cfa243c8fe407e0a6639897ccdeaa81c7ccec520e30da90d91d2783a29

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: bottleneck-1.5.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 107.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bottleneck-1.5.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f9545206daaffaecf88d176f657b7c939f6d909275991121dc8dee936dcd8985
MD5 a3685a81a6d14f72fe7a32da0f53ac1b
BLAKE2b-256 9a7027a8a59ecd9a7cdf75a2e60aca23128f49d14bc419174f51522af1d8f5ba

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9ca39aca62f0e827fc8c9b352352224ecb38a98d8f9cbc30f071672c31904aa2
MD5 8fd12663940b60d9f4df0da0fd79dcf4
BLAKE2b-256 0852f857bdbf40b427379c0499efc1c4b0da03ef9a41a93dafae1745deb9abf8

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f13b644207118564b95eb7b2130555fb4a4b2266a739b2a8f98a5276baa723ea
MD5 efc90a3375fdfdd6af29cee1ee813dad
BLAKE2b-256 c2d9a129c98fc0cf7f557eaa56e5fdcbe48d374124fe82965c0cbb0167044a15

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8892f2d90d63a3dd5884e8f3fe7bbe8c569851a984023340ef926d2205332d96
MD5 1e688ae94aba48a990373e6b078e23d0
BLAKE2b-256 f016b4d4f9549fd42bec9937f80f71ce2f76894fc8259e65d9e11ddbfc3e7962

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1648f2a0d52b78f6e530385862e279ffa66baae2ce038bfdf5d8b29a638bac46
MD5 87a2e47bbe061b565876fc48e180a21d
BLAKE2b-256 21b2b2e255bb46ec6e2ebaba45c96cda029c517e0aa3528166bb9b0e3fadbf9f

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7962177b04b865b17e883ace01c68cf50353ef6a9437ec01bad1f5a1a2708490
MD5 49e66478636e783f70f60eedddf0ca99
BLAKE2b-256 9b1182e34ccc8c29cd8066fda82677891b1bc6e69ec69f90f117512e94603274

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: bottleneck-1.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 112.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bottleneck-1.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6dca60131912adc87ba6c8f5d3bb9e6f5f9e1bf4ec2193ecb4ab6d0001d4bbc0
MD5 f44a5f643d8bc6b779d7ed44aca053ab
BLAKE2b-256 4fbf2e957fed5aec5a64419168bd75566dcfdafc15255b2c41a3e083bb64927c

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: bottleneck-1.5.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 107.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bottleneck-1.5.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d5cd43f4fd0a353b1cd135031190fb67c95f820a5a99501a7c5524fef2191555
MD5 84e9f8f1cb5a98accc3bfd6b9a4f922d
BLAKE2b-256 7ad48fceeadb09260fa47c96294cc607c71216e94d5b48e3e08d7249a718f4b3

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c90adb81d9ea0a7834426c2f2a3071f970f9fc562036a434d697c8265c4171db
MD5 af8946f6c7401597b3d5ef795112866d
BLAKE2b-256 bf6bd70a19312b3d0a35d3b2faa1c59b1c3f3273655e06bf3dd02523771451c1

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 21a72f5b203ceffc56b73111b47ae63b86278c73c45d53baaae3612b2774fb84
MD5 ffd05fd941eb5af45d7905b01a19c84e
BLAKE2b-256 d9d240096d7c160000a12361ac0ac496340eaf9afb166111f4606fe3c32424b1

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5b442e53bc80ab106e9ed1bf5e0b443a205dabbf18d62147432df92c315aa22e
MD5 0b4d2d090eb0fd5a4733809738538b1a
BLAKE2b-256 047260e4bd5dec2ea4dc57f1519c28ca347bad78a957987ed32791070f98b868

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3a84c1067667963e469878f3d8fc8af4aeafd3b46f53deb22e00cc9c7da40a6
MD5 bd51a13e20ecef1fed4020fa50ad2275
BLAKE2b-256 d83a2041af3ffb55fb8d19228b430a515d6b540651c3c001316783f828edf0c2

See more details on using hashes here.

File details

Details for the file bottleneck-1.5.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bottleneck-1.5.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8ef667f3a8602c2d48f0c5dcbe5a018b3c5b978cfc0bb9d0af59797ea1f5d48b
MD5 0c8f43d232b97838a5df065bb06b8530
BLAKE2b-256 636f22ec70c2747493952cedbbcc11228fc4635f59a46e14492ec7c6f4576555

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page