Skip to main content

Fast NumPy array functions written in C

Project description

Bottleneck is a collection of fast NumPy array functions written in C.

Let’s give it a try. Create a NumPy array:

>>> import numpy as np
>>> a = np.array([1, 2, np.nan, 4, 5])

Find the nanmean:

>>> import bottleneck as bn
>>> bn.nanmean(a)
3.0

Moving window mean:

>>> bn.move_mean(a, window=2, min_count=1)
array([ 1. ,  1.5,  2. ,  4. ,  4.5])

Benchmark

Bottleneck comes with a benchmark suite:

>>> bn.bench()
Bottleneck performance benchmark
    Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4
    Speed is NumPy time divided by Bottleneck time
    NaN means approx one-fifth NaNs; float64 used

              no NaN     no NaN      NaN       no NaN      NaN
               (100,)  (1000,1000)(1000,1000)(1000,1000)(1000,1000)
               axis=0     axis=0     axis=0     axis=1     axis=1
nansum         29.7        1.4        1.6        2.0        2.1
nanmean        99.0        2.0        1.8        3.2        2.5
nanstd        145.6        1.8        1.8        2.7        2.5
nanvar        138.4        1.8        1.8        2.8        2.5
nanmin         27.6        0.5        1.7        0.7        2.4
nanmax         26.6        0.6        1.6        0.7        2.5
median        120.6        1.3        4.9        1.1        5.7
nanmedian     117.8        5.0        5.7        4.8        5.5
ss             13.2        1.2        1.3        1.5        1.5
nanargmin      66.8        5.5        4.8        3.5        7.1
nanargmax      57.6        2.9        5.1        2.5        5.3
anynan         10.2        0.3       52.3        0.8       41.6
allnan         15.1      196.0      156.3      135.8      111.2
rankdata       45.9        1.2        1.2        2.1        2.1
nanrankdata    50.5        1.4        1.3        2.4        2.3
partition       3.3        1.1        1.6        1.0        1.5
argpartition    3.4        1.2        1.5        1.1        1.6
replace         9.0        1.5        1.5        1.5        1.5
push         1565.6        5.9        7.0       13.0       10.9
move_sum     2159.3       31.1       83.6      186.9      182.5
move_mean    6264.3       66.2      111.9      361.1      246.5
move_std     8653.6       86.5      163.7      232.0      317.7
move_var     8856.0       96.3      171.6      267.9      332.9
move_min     1186.6       13.4       30.9       23.5       45.0
move_max     1188.0       14.6       29.9       23.5       46.0
move_argmin  2568.3       33.3       61.0       49.2       86.8
move_argmax  2475.8       30.9       58.6       45.0       82.8
move_median  2236.9      153.9      151.4      171.3      166.9
move_rank     847.1        1.2        1.4        2.3        2.6

You can also run a detailed benchmark for a single function using, for example, the command:

>>> bn.bench_detailed("move_median", fraction_nan=0.3)

Only arrays with data type (dtype) int32, int64, float32, and float64 are accelerated. All other dtypes result in calls to slower, unaccelerated functions. In the rare case of a byte-swapped input array (e.g. a big-endian array on a little-endian operating system) the function will not be accelerated regardless of dtype.

Where

download

https://pypi.python.org/pypi/Bottleneck

docs

https://bottleneck.readthedocs.io

code

https://github.com/pydata/bottleneck

mailing list

https://groups.google.com/group/bottle-neck

License

Bottleneck is distributed under a Simplified BSD license. See the LICENSE file and LICENSES directory for details.

Install

Requirements:

Bottleneck

Python 2.7, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11; NumPy 1.16.0+

Compile

gcc, clang, MinGW or MSVC

Unit tests

pytest

Documentation

sphinx, numpydoc

To install Bottleneck on Linux, Mac OS X, et al.:

$ pip install .

To install bottleneck on Windows, first install MinGW and add it to your system path. Then install Bottleneck with the command:

$ python setup.py install --compiler=mingw32

Alternatively, you can use the Windows binaries created by Christoph Gohlke: http://www.lfd.uci.edu/~gohlke/pythonlibs/#bottleneck

Unit tests

After you have installed Bottleneck, run the suite of unit tests:

In [1]: import bottleneck as bn

In [2]: bn.test()
============================= test session starts =============================
platform linux -- Python 3.7.4, pytest-4.3.1, py-1.8.0, pluggy-0.12.0
hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/home/chris/code/bottleneck/.hypothesis/examples')
rootdir: /home/chris/code/bottleneck, inifile: setup.cfg
plugins: openfiles-0.3.2, remotedata-0.3.2, doctestplus-0.3.0, mock-1.10.4, forked-1.0.2, cov-2.7.1, hypothesis-4.32.2, xdist-1.26.1, arraydiff-0.3
collected 190 items

bottleneck/tests/input_modification_test.py ........................... [ 14%]
..                                                                      [ 15%]
bottleneck/tests/list_input_test.py .............................       [ 30%]
bottleneck/tests/move_test.py .................................         [ 47%]
bottleneck/tests/nonreduce_axis_test.py ....................            [ 58%]
bottleneck/tests/nonreduce_test.py ..........                           [ 63%]
bottleneck/tests/reduce_test.py ....................................... [ 84%]
............                                                            [ 90%]
bottleneck/tests/scalar_input_test.py ..................                [100%]

========================= 190 passed in 46.42 seconds =========================
Out[2]: True

If developing in the git repo, simply run py.test

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Bottleneck-1.3.8rc5.tar.gz (103.3 kB view details)

Uploaded Source

Built Distributions

Bottleneck-1.3.8rc5-cp312-cp312-win_amd64.whl (110.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

Bottleneck-1.3.8rc5-cp312-cp312-win32.whl (105.5 kB view details)

Uploaded CPython 3.12 Windows x86

Bottleneck-1.3.8rc5-cp312-cp312-musllinux_1_1_x86_64.whl (401.9 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

Bottleneck-1.3.8rc5-cp312-cp312-musllinux_1_1_i686.whl (409.1 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

Bottleneck-1.3.8rc5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (360.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.3.8rc5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (364.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.3.8rc5-cp312-cp312-macosx_10_9_x86_64.whl (116.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

Bottleneck-1.3.8rc5-cp311-cp311-win_amd64.whl (110.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

Bottleneck-1.3.8rc5-cp311-cp311-win32.whl (104.9 kB view details)

Uploaded CPython 3.11 Windows x86

Bottleneck-1.3.8rc5-cp311-cp311-musllinux_1_1_x86_64.whl (400.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

Bottleneck-1.3.8rc5-cp311-cp311-musllinux_1_1_i686.whl (408.7 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

Bottleneck-1.3.8rc5-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (358.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.3.8rc5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (363.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.3.8rc5-cp311-cp311-macosx_10_9_x86_64.whl (116.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

Bottleneck-1.3.8rc5-cp310-cp310-win_amd64.whl (110.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

Bottleneck-1.3.8rc5-cp310-cp310-win32.whl (104.9 kB view details)

Uploaded CPython 3.10 Windows x86

Bottleneck-1.3.8rc5-cp310-cp310-musllinux_1_1_x86_64.whl (396.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

Bottleneck-1.3.8rc5-cp310-cp310-musllinux_1_1_i686.whl (404.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

Bottleneck-1.3.8rc5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (354.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.3.8rc5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (359.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.3.8rc5-cp310-cp310-macosx_10_9_x86_64.whl (116.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

Bottleneck-1.3.8rc5-cp39-cp39-win_amd64.whl (110.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

Bottleneck-1.3.8rc5-cp39-cp39-win32.whl (104.9 kB view details)

Uploaded CPython 3.9 Windows x86

Bottleneck-1.3.8rc5-cp39-cp39-musllinux_1_1_x86_64.whl (394.9 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

Bottleneck-1.3.8rc5-cp39-cp39-musllinux_1_1_i686.whl (402.9 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

Bottleneck-1.3.8rc5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (353.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.3.8rc5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (358.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.3.8rc5-cp39-cp39-macosx_10_9_x86_64.whl (116.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

Bottleneck-1.3.8rc5-cp38-cp38-win_amd64.whl (110.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

Bottleneck-1.3.8rc5-cp38-cp38-win32.whl (104.9 kB view details)

Uploaded CPython 3.8 Windows x86

Bottleneck-1.3.8rc5-cp38-cp38-musllinux_1_1_x86_64.whl (398.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

Bottleneck-1.3.8rc5-cp38-cp38-musllinux_1_1_i686.whl (406.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

Bottleneck-1.3.8rc5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (355.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.3.8rc5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (359.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.3.8rc5-cp38-cp38-macosx_10_9_x86_64.whl (116.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

Bottleneck-1.3.8rc5-cp37-cp37m-win_amd64.whl (110.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

Bottleneck-1.3.8rc5-cp37-cp37m-win32.whl (104.8 kB view details)

Uploaded CPython 3.7m Windows x86

Bottleneck-1.3.8rc5-cp37-cp37m-musllinux_1_1_x86_64.whl (397.8 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

Bottleneck-1.3.8rc5-cp37-cp37m-musllinux_1_1_i686.whl (405.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

Bottleneck-1.3.8rc5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (356.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.3.8rc5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (360.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.3.8rc5-cp37-cp37m-macosx_10_9_x86_64.whl (115.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file Bottleneck-1.3.8rc5.tar.gz.

File metadata

  • Download URL: Bottleneck-1.3.8rc5.tar.gz
  • Upload date:
  • Size: 103.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for Bottleneck-1.3.8rc5.tar.gz
Algorithm Hash digest
SHA256 410b7edb88e0714a89c545c1ea1a1f738f6960380fda3751df2de6f023fcea9d
MD5 b288b5a161c902bfcb551ea8ae400621
BLAKE2b-256 0cdc04b5f9c419825c9501de33a532f10763c3144d0ac2ee1af74666abf4816a

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2b43bf27f51b8305e6c1aed4f9eac57fcdc4f9567ba418aa975152c5ecf729cd
MD5 3490e72859dd3f347614ab806031fbf4
BLAKE2b-256 b1942393a7e3eaa59ec176ca48591e8752995073827172da67b2456063e22b36

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 d476910fc5786d2e43810c35297424dddd00eb9c6f952d4b5640957aa2295afc
MD5 743a54126f1c327914d6b26c34d68f8e
BLAKE2b-256 1500341fccf95cf6c603ec1f86ec358c2f01dc986cc4b9bee1410d798d5cb26a

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ff0e2f7222b21d7eb2b96515db800767f0326e2f3e6a01886f2a8f85e3dcb392
MD5 d83f2dee8fb79838a63cf7d9b3f52720
BLAKE2b-256 b0e3a2c62a0d23b2fa87315e66f7293f78a28ec54c97db37e29ce161bc6597a6

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 daaa4bda5ac6425566e50dd5107a6d013a0eebb2a09db3b13b221b0f662ce4cd
MD5 284fcd1235f07042f4223ff62af51288
BLAKE2b-256 68292753ac99697e709bbbeba58748a4287cfd99e2e02e25b4212446149b4cf9

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5ff4788ad7d725a2b009e0b084e9163da235276b3ce88334393ccd53aee6bd20
MD5 c52b18c79b176e048485d1ec37dde4c0
BLAKE2b-256 9c4b54d485b97a17efc699a1e42a99b58d32119397609e0fced13524e05b946f

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c67b2ed3c51d8e7acb1d5cb3f9539d6fe1380c778895ed8549220e4ff50c39e0
MD5 7dd923a704f84e5fc7d280ea854e0ac0
BLAKE2b-256 e47c4dffe0f7a22329fd1a247a965c72f19c707802ba2b567bfafe0e7143ab4b

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2c1f79485ae94d7496ff4b62cd49866677131b1eb87d2eba5120b6e6e43c4421
MD5 e7834225aef6e01b801d68767c23de3b
BLAKE2b-256 1b3bcc56fed7054a945f4d1cfcbd4a19ee95ec5a3008137c8767c71f60fe1991

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 19732c7a6b0c4deb9987da6542f4922f1bb318314ab4a2722781e7b7a7f52e7e
MD5 c9ae040ed4ba991c77f8ea4c046450d7
BLAKE2b-256 9b776e00c4a84b1facf6b7de888e84f10c22d65572b49929a079482fef302346

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d043e7d054e528412962defce242577d99174d4e895b352634bcce884b071646
MD5 62ba7315d914c32024b64221805f7efa
BLAKE2b-256 61d51a04932d543a7edaf9319d9db93cc7d3ab6518286f5ac52e973b30bccb12

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7899a4de98f448864bd479bde086d29467b8d10fc0287f2cb4a6384406163bed
MD5 27f4a26fdc32a0d1e75d0a4b094f664f
BLAKE2b-256 0630724964cf277d477e6dda9a2ada68daeaba193d879e0b6d2f313203166ca1

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a1030e6e788f87881725e7f4e9dce3f7bb6554bcd95b4de54ab8f416c16a0232
MD5 071f65ee75f8056927aeadb5e2a597ae
BLAKE2b-256 8e9fbc757fdae76faf4538b098f5c13669515ad7e43e43f25a1cf014d99cf558

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4b093bf568c4f6f8dcc136d628167e20d5e09fef02717819771e51d186693d37
MD5 a491b78a6e72f211655998a4e4e8dea8
BLAKE2b-256 cfe29dc306ffc7b8c35a6a2374d16573c851106403054e84ad25f1bcd3fd7c15

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1904e94ea584b1d5531d21d070c3d6e94c020b0a61e0d609566efc8e2598576f
MD5 233e84a0655eec76e88e63d07db7dd23
BLAKE2b-256 d14613e37fd7b06820cdaf12eb51cf3d55295b7d4d118875dbaba1d62204143c

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5ee5823910e6dd197d499691608c8f001e67034006c6909dfc06c5b5ce521127
MD5 80b52731622441fa7fe5c25dcb5dd35e
BLAKE2b-256 347c5e9ed2e14269f4249e7b5552ff925157a0a6e0f036b25d911f7ff2172f1a

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5911ec7fc779715a860f461a47bdedb1942f781b220372cd28ce0a604b7583f3
MD5 d4d424703911cfa54e506ca7b9c60693
BLAKE2b-256 9d789a349c8d3ad3817aa216a99931a4e07347adc6d9fe790cf8193dce88bf5a

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 1093313499950123e1aab817267563d02d20cce1ded6dbb73a1c850804dae7a1
MD5 81a885c9caa55c00b8cf624059340474
BLAKE2b-256 774f43d39540450b23d20b08bea084e7f2bd8a695e5299401c10c4282de48de6

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cee7a9c6d99bb2c200c9e83c297792ac040eb5c16d49efaa3740d9c243ac08bb
MD5 3bb847696fd9312c0d3b9f78f1845de3
BLAKE2b-256 2d7418dabe096732d78acd26d06b5dd68bf43739362d84468538ea7bd04a7ae2

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 dc68197ab20e63af980dbbfd2c249e9b5a021ce41b3cc3f2b15a9a8fca09b663
MD5 94ae4e8cce1b46459b00ea5cdd91d242
BLAKE2b-256 08065fb50f06578de5df4e5c3ab159a3c0afe45a0f7a719593f57b28ce6bb0d2

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3356adc363c19dfcfc2f929d40bf9e5c7c77a9b1a53c544f0df57c493a562fa8
MD5 236a6e2f572a60d61cb11a64e3af4586
BLAKE2b-256 440f660f7e1bddc70ace38bac3cceb131d26c0864f9241f3643877c271898e67

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a458fd139a720e30d624cd9f3a87d82bd21e131cd76bd210b667f48712bd13cf
MD5 badfa22e9e3e23b0a56479524b56acf7
BLAKE2b-256 e31e59a78aec9fa60414cc18fb4d9a39093bb36d87e6153c1c8ff9846637407c

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a173fcf8e3e3a32fd6bfe2f8c51fea81f12c029e3c3cb386979ddacf15709e23
MD5 b639b9eddac58371dd506f9db623bb5e
BLAKE2b-256 1f332f55728b3b333200fbc0a54304330f2326b1aebc1a7f1f66419b57d04e96

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 de6e49a7e469986f4db3a863228984c04c177ab866b04b329238fbdb484719f1
MD5 327ab71ac8cdf4ac96fc17868f768ea4
BLAKE2b-256 7ccec1bfcb23b0270952b864e37710e43ea199a693488db2e08e34bfe623762a

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp39-cp39-win32.whl.

File metadata

  • Download URL: Bottleneck-1.3.8rc5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 104.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for Bottleneck-1.3.8rc5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 19771b58ad28cfd8ce1a1cec0bddfeb3bd30798ba2ded3a4f6d9aa5ee0d8c8f1
MD5 c0f257903e7d682daf3cda37bab956e8
BLAKE2b-256 4b67a46263fb91d4813161d2c80fbd5358a7344f7fa90da8de327c3c1303424b

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f457623d14984326c31a2dc3f42651133753a9ff5c0aec42cc6f52ed0f0b790c
MD5 34bc37c291f8cddb8002ecbaef231b8b
BLAKE2b-256 36c1512eafb924edb6323c1359ee2b584acae6cd840ec8c18622fbf65c19a332

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 66820e0d4e205829c913b5a3d69d2c8481a92360dca98a3b169fef4527cddf31
MD5 092b096ad902643ae5c6aaecd5cdbf74
BLAKE2b-256 b6c1a64231b6a7533a44b846ec7b477d75165e9867a4170ffd8b1ad9eb6ea344

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3c134bc062ac65a0c4527c6ea566177e1640112bf28a91210e6c209093592b4e
MD5 d4364a48806fa9a078ca7e66a66d5184
BLAKE2b-256 12f85ac8ae4e8c8f92902c0fb8e189d4612c56b4634ec58bf89d3151e19653d0

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5ee39ded574a14afb28656a1bbdfa692d6e0e0d067496a80b0d6678d107d48c7
MD5 e159dac13ada5af091d04aafa9cc86d9
BLAKE2b-256 f7152ee32b39e758e1c6f4033aad6f020e6a1cb60a30baa65482cf56bb1e5b4e

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1b9aaf7e97a6e3599343e673f89332b63061bca4cd61e16d3b29a56b2223e04a
MD5 190c87c7603250b856dd8545b9834d26
BLAKE2b-256 50fb6245702b66088ae042e69a9c1698d52030159a9312c1a89fd96a357b295c

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ae1a41eeffce83b790238684da3bed02b62cab2b9134767364ab055bddeca762
MD5 abdd66098c773d770b9b4a2d2f04af1d
BLAKE2b-256 6ac5cbe373054b7830bf77648cf6ac6b2b78ccb37b93e773b15ee4bb8a258f79

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp38-cp38-win32.whl.

File metadata

  • Download URL: Bottleneck-1.3.8rc5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 104.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for Bottleneck-1.3.8rc5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 83bf6d696eac87951c3abe2641d1f74466eb86bf67c5de07fa4cce5e94798d30
MD5 5968d80a42200b015fd3da6d6f7b0417
BLAKE2b-256 1366aa666d9a6db76a90e5e0633695ec576868d0bf738c0c3b9a55301ced4448

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1cf014811fd1f7839146557177f74d3ecd7edc17c06784808c4ff8d1aa123840
MD5 eefda4f6b751cc4040fb10b34bb7c901
BLAKE2b-256 ba42a857d78d8488f7af7237365473c2324603d2cc970d5cfc33a02d6c8893a0

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b920be02d9909d19408ae2466d3207d5c9caf442e75597f93e12530552f27d60
MD5 e417bb7b597e41a5f21fa4acc4b898d8
BLAKE2b-256 ff34084e98684abe29f707dd1bf2dab807d2459562f9496c1ffb6aec13603e17

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3bed1eda27a417539734087ec69c0aa4cc7bf4aa27e541dd9356d4f17ff9198d
MD5 a21897862d43f5ad171f6b1a35f70564
BLAKE2b-256 54f2daefe294bb48e5ee7a4bd9138107991ad2ae42688f3a2f4c52e859f97c21

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1039c4f432e6dc9cf5a0a2288c9cf5e5cac62c859e89d3351b08bccb0d396c97
MD5 54726c23f2f4f391b1aa951686b082f7
BLAKE2b-256 385f07a151c5d2f82270fe83fe62485001c56b0b170281bfdc7f9cd077fac0e0

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1e52d5e0ef0411374fc51fbeabb7d1a1e54c040a2b74e26a01cebbdd90fa0071
MD5 4ba03dc91ec0c4a1d923156ee57f169a
BLAKE2b-256 bdeafe18f2b2ca763bdbd543a39af8438a74a78f102285510307c832197e4301

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b04f3f78470ef56950c3b509d9dc4c61d6dc799e6bbd18b128e942e39b34b60c
MD5 59c223e13f21517be396f38c5d75fecb
BLAKE2b-256 c02ef7e6dbc85e2a0f9b3132eb3b8f277a14c7438625b4eeb7605c38a80c7d4c

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 e6220ebd1d8303f2ebca5bbe9611c443d9488400297c89c3c1eda5e0a5d5b68b
MD5 43037ce59c11b84b0edd4fb8d4875cd1
BLAKE2b-256 d46e59af7a4ccf8646df8739398a7b04f14e9734c88025b3de7c26a5f271d68d

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fb4c63c5862ea35cf1ed874e2146c6c789e0b304c2b96e5a197c7372f53b7516
MD5 e8ef7d0ae9ba940f1f87837f87b80b45
BLAKE2b-256 11fb728a8f6f35a46a6dd02c8f7ab1029d1ac85bc5448805fbc470480196e897

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3ec5e9bc992763396d565f7084cd09cd6baf881840b99909705ba7460edfe197
MD5 185aa1d35bede61ff6f7c85e95161890
BLAKE2b-256 f046b896942e83da36d1b41d9d87d54a52d55d8f829875239eb5a3ebdc41ec38

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5aa50f0895b2e961360dc0f491749f21ab0b050b3d11c6e327e5c1fc221ced2e
MD5 f5a2a79ba57e1a6de42ff06eeb784dfb
BLAKE2b-256 97541e1ce1d564d52f3e074e545d441ec1c321783c290f1ec1a19956d93a078b

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a1a15eedc905f095091b7c8e921a604dc2d50e959995ae70fd46b9f5bd5a033e
MD5 dd23986c8a522fb5c97b2a78881cdba0
BLAKE2b-256 18cb4ee629fa9445c4f1499a61165fb0a8cc8e231797bb1ad3126c19ecab77f6

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.8rc5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.8rc5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f68dd7b2b2a52de6e8f682df98f812dcba3ca760b2247b63f51689c5dfeca78c
MD5 168c43d6f9aac52b5fde27d5440cf934
BLAKE2b-256 b6338b12254e3781f70e7d98af7e3f1d2cf2adf7be870792dd57c6636b91bc7d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page