Skip to main content

Add a short description here!

Project description

Project generated with PyScaffold PyPI-Server

BCT

Machine learning toolkit designed to support data scientists in breast cancer detection, classification and analysis.

Installation

Install the package with:

pip install breast-cancer-toolkit

Usage as CLI

Convert the format

parallel bct convert {} {.}.tiff ::: *.dcm

Usage as library

Models

Remove background with instance segmentation

Model Training data Resolution # of samples seen IoU Accuracy

Data sources

Source Argument Type Notes
image 'image.jpg' str or Path Single image file. Format supported: jgp, png, dcm, tiff
URL 'https://ultralytics.com/images/bus.jpg' str URL to an image.
screenshot 'screen' str Capture a screenshot.
PIL Image.open('im.jpg') PIL.Image HWC format with RGB channels.
OpenCV cv2.imread('im.jpg') np.ndarray HWC format with BGR channels uint8 (0-255).
numpy np.zeros((640,1280,3)) np.ndarray HWC format with BGR channels uint8 (0-255).
torch torch.zeros(16,3,320,640) torch.Tensor BCHW format with RGB channels float32 (0.0-1.0).
CSV, json, xlsx 'sources.csv' str or Path CSV file containing paths to images, videos, or directories.
video 'video.mp4' str or Path Video file in formats like MP4, AVI, etc.
directory 'path/' str or Path Path to a directory containing images or videos.
glob 'path/*.jpg' str Glob pattern to match multiple files. Use the * character as a wildcard.
YouTube 'https://youtu.be/LNwODJXcvt4' str URL to a YouTube video.
stream 'rtsp://example.com/media.mp4' str URL for streaming protocols such as RTSP, RTMP, TCP, or an IP address.
multi-stream 'list.streams' str or Path *.streams text file with one stream URL per row, i.e. 8 streams will run at batch-size 8.

Note

This project has been set up using PyScaffold 4.5 and the dsproject extension 0.0.post1.dev166+g2aaddf7.d20240514.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

breast_cancer_toolkit-1.0.0.tar.gz (32.0 kB view details)

Uploaded Source

Built Distribution

breast_cancer_toolkit-1.0.0-py3-none-any.whl (10.8 kB view details)

Uploaded Python 3

File details

Details for the file breast_cancer_toolkit-1.0.0.tar.gz.

File metadata

  • Download URL: breast_cancer_toolkit-1.0.0.tar.gz
  • Upload date:
  • Size: 32.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for breast_cancer_toolkit-1.0.0.tar.gz
Algorithm Hash digest
SHA256 03aa8cd021f4a49133cc73f57afda44582723bbc0e3986a3fe14f53bcb22ef78
MD5 3d4df1d36409a53c89bdc530715e51c8
BLAKE2b-256 f61925c5735eddd91839718864d5bb5d65d6bf9973a6dae0df320d4190573504

See more details on using hashes here.

File details

Details for the file breast_cancer_toolkit-1.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for breast_cancer_toolkit-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4277e4b8684daff2713690eb5e45026349bc7ee30022bd03a53adb6e5317a1ba
MD5 1fbe61bb2764b847a8f650489172e29e
BLAKE2b-256 7ad4bd7f502ffa975f974985cfb3d7133f060dfe1b67cacccaebbd2784903498

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page