Skip to main content

Merging crystallography data without much physics.

Project description

Careless

Merging crystallography data without much physics.

Build codecov PyPI DOI

Installation

As described in the TensorFlow docs, it is best practice to install careless in a fresh anaconda environment to avoid conflicts with previously installed dependencies.

Create a new environment using the following commands.

conda create -yn careless python
conda activate careless
pip install --upgrade pip

Now install careless for CPU,

pip install careless

or for NVIDIA GPUs

pip install careless[cuda]

You may run careless devices to check whether GPU support was successfully installed. If you run into issues please File an issue.

Installation with GPU Support

Careless supports GPU acceleration on NVIDIA GPUs through the CUDA library. We strongly encourage users to take advantage of this feature. To streamline installation, we maintain a script which installs careless with CUDA support. The following section will guide you through installing careless for the GPU.

Dependencies

careless is likely to run on any operating system and python version which is compatible with TensorFlow. careless uses mostly tools from the conventional scientific python stack plus

careless does not require but may take advantage of various accelator cards supported by TensorFlow.

Get Help

For help with command line arguments, type careless mono --help for monochromatic or careless poly --help for Laue processing options.

For usage examples and data from the careless preprint, check out careless-examples. For a detailed case study of careless processing including information about crossvalidation measures, see our preprint.

Still confused? File an issue! Issues help us improve our code base and leave a public record for other users.

Core Model

pgm

careless uses approximate Bayesian inference to merge X-ray diffraction data. The model which is implemented in careless tries to scale individual reflection observations such that they become consistent with a set of prior beliefs. During optimization of a model, careless trades off between consistency of the merged structure factor amplitudes with the data and consistency with the priors. In essence, the optimizer tries to strike a compromise which maximizes the likelihood of the observed data while not straying far from the prior distributions.

The implementation breaks the model down into 4 types of objects.

Variational Merging Model

The VariationalMergingModel is central object which houses the estimates of the merged structure factors. In careless merged structure factors are represented by truncated normal distributions which have support on (0, ∞). According to French and Wilson2 this is the appropriate parameterization for acentric reflections which are by far the majority in most space groups. These distributions are stored in the VariationalMergingModel.surrogate_posterior attribute. They serve as a parametric approximation of the true posterior which cannot easily be calculated. It has utility methods for training the model. It contains an instance of each of the other objects. During optimization, the loss function is constructed by sampling values for the merged structure factors and scales these are combined with the prior and likelihood to compute the Evidence Lower BOund or (ELBO) Gradiennt ascent is used to maximize the ELBO.

Priors

The simplest prior which careless implements are the popular priors1 derived by A. J. C. Wilson from the random atom model. This is a relatively weak prior, but it is sufficient in practice for many types of crystallographic data. careless will include support for reference and multivariate priors in future releases.

Likelihoods

The quality of the current structure factor estimates during optimization is judged by a likelihood function. These are symmetric probability distributions centered at the observed reflection observation. careless includes normally-distributed and robust, t-distributed likelihoods.

Scaling Models

Right now the only model which careless explicitly implements is a sequential neural network model. This model takes reflection metadata as input and outputs a gaussian distribution of likely scale values for each reflection.

Special metadata keys for scaling. careless will parse any existing metadata keys in the input Mtz(s). During configuration some new metadata keys will be populated that are useful in many instances.

  • dHKL : The inverse square of the reflection resolution. Supplying this key is a convenient way to parameterize isotropic scaling.
  • file_id : An integer ID unique to each input Mtz.
  • image_id : An integer ID unique to each image across all input Mtzs.
  • {H,K,L}obs : Internally, careless refers to the original miller indices from indexing as Hobs, Kobs, and Lobs. Supplying these three keys is the typical method to enable anisotropic scaling.

Considerations when choosing metadata.

  • Polarization correction : Careless does not apply a specific polarization correction. In order to be sure the model accounts for polarization, it is important to supply the x,y coordinates of each reflection observation.
  • Isotropic scaling : This is easily accounted for by supplying the 'dHKL' metadata key.
  • Interleaved rotation series : Most properly formatted Mtzs have a "Batch" column which contains a unique id for each image. Importantly, these are usually in order. If you have time resolved data with multiple timepoints per angle, you may want to use the "Batch" key in conjunction with the "file_id" key. This way images from the same rotation angle will be constrained to scale more similarly.
  • Multi crystal scaling : For scaling multiple crystals, it is best if image identifiers in the metadata do not overlap. Therefore, use the 'image_id' key.

1: Wilson, A. J. C. “The Probability Distribution of X-Ray Intensities.” Acta Crystallographica 2, no. 5 (October 2, 1949): 318–21. https://doi.org/10.1107/S0365110X49000813.

2: French, S., and K. Wilson. “On the Treatment of Negative Intensity Observations.” Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 34, no. 4 (July 1, 1978): 517–25. https://doi.org/10.1107/S0567739478001114.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

careless-0.4.9.tar.gz (55.1 kB view details)

Uploaded Source

Built Distribution

careless-0.4.9-py3-none-any.whl (73.9 kB view details)

Uploaded Python 3

File details

Details for the file careless-0.4.9.tar.gz.

File metadata

  • Download URL: careless-0.4.9.tar.gz
  • Upload date:
  • Size: 55.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.15

File hashes

Hashes for careless-0.4.9.tar.gz
Algorithm Hash digest
SHA256 221110f256dc75ef895446226303ea480d9d9d558c5df5641d483967241694a5
MD5 ec47f973b37ffa1e614a9f02c9e12ec9
BLAKE2b-256 9311d1de8065b4f84abf426c32fc0ad99be7069ae84b8583fcf1c61bdf65887e

See more details on using hashes here.

File details

Details for the file careless-0.4.9-py3-none-any.whl.

File metadata

  • Download URL: careless-0.4.9-py3-none-any.whl
  • Upload date:
  • Size: 73.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.15

File hashes

Hashes for careless-0.4.9-py3-none-any.whl
Algorithm Hash digest
SHA256 47fc12cee70720e86faa4bee4f3ead5b43561c8adc5de492271f94f85a4bf8f8
MD5 0564a085f7afa7337877e4cc00227e12
BLAKE2b-256 93a8e648afb28ff4215742738812da2ad138eecd4049343030211e6a7ae91e73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page