A Bayesian Model of the Diffuse Neutral Interstellar Medium
Project description
Caribou
A Bayesian Model of the Diffuse Neutral Interstellar Medium
caribou_hi
is a Bayesian model of the diffuse neutral interstellar medium written in the bayes_spec
spectral line modeling framework, which enables inference from observations of neutral hydrogen (HI) 21-cm emission and absorption spectra.
Read below to get started, and check out the tutorials and guides here: https://caribou-hi.readthedocs.io.
- Installation
- Notes on Physics & Radiative Transfer
- Models
- Syntax & Examples
- Issues and Contributing
- License and Copyright
Installation
Basic Installation
Install with pip
in a conda
virtual environment:
conda create --name caribou_hi -c conda-forge pymc nutpie pip
conda activate caribou_hi
pip install caribou_hi
Development Installation
Alternatively, download and unpack the latest release, or fork the repository and contribute to the development of caribou_hi
!
Install in a conda
virtual environment:
cd /path/to/caribou_hi
conda env create -f environment.yml
conda activate caribou_hi-dev
pip install -e .
Notes on Physics & Radiative Transfer
All models in caribou_hi
apply the same physics and equations of radiative transfer.
The 21-cm excitation temperature (also called the spin temperature) is derived from the gas kinetic temperature, gas density, and Lyα photon density following Kim et al. (2014) equation 4.
Clouds are assumed to be homogenous and isothermal. The ratio of the column density to the volume density, both free parameters, thus determines the path length through the cloud. The non-thermal line broadening assumes a Larson law relationship.
The optical depth and radiative transfer prescriptions follow that of Marchal et al. (2019). By default, the clouds are ordered from nearest to farthest, so optical depth effects (i.e., self-absorption) may be present.
Notably, since these are forward models, we do not make assumptions regarding the optical depth. These effects are predicted by the model. There is one exception: the ordered
argument, described below.
Models
The models provided by caribou_hi
are implemented in the bayes_spec
framework. bayes_spec
assumes that the source of spectral line emission can be decomposed into a series of "clouds", each of which is defined by a set of model parameters. Here we define the models available in caribou_hi
.
EmissionModel
EmissionModel
is a model that predicts 21-cm emission brightness temperature spectra. The SpecData
key for this model must be emission
. The following diagram demonstrates the relationship between the free parameters (empty ellipses), deterministic quantities (rectangles), model predictions (filled ellipses), and observations (filled, round rectangles). Many of the parameters are internally normalized (and thus have names like _norm
). The subsequent tables describe the model parameters in more detail.
Cloud Parametervariable |
Parameter | Units | Prior, where ($p_0, p_1, \dots$) = prior_{variable} |
Defaultprior_{variable} |
---|---|---|---|---|
log10_NHI |
log10 HI column density | cm-2 |
$\log_{10}N_{\rm HI} \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [20.0, 1.0] |
log10_nHI |
log10 HI density | cm-3 |
$\log_{10}n \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [0.0, 1.0] |
log10_tkin |
log10 kinetic temperature | K |
$\log_{10}T_K \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [3.0, 1.0] |
log10_n_alpha |
log10 Lyα photon density | cm-3 |
$\log_{10}n_\alpha \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [-6.0, 1.0] |
log10_larson_linewidth |
Non-thermal broadening FWHM at 1 pc | km s-1 |
$\log_{10}\Delta V_{\rm 1 pc} \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [0.2, 0.1] |
larson_power |
Nonthermal size-linewidth power law index | unitless | $\alpha \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [0.4, 0.1] |
velocity |
Velocity (same reference frame as data) | km s-1 |
$V \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [0.0, 10.0] |
Hyper Parametervariable |
Parameter | Units | Prior, where ($p_0, p_1, \dots$) = prior_{variable} |
Defaultprior_{variable} |
---|---|---|---|---|
rms_emission |
Emission spectrum rms noise | K |
${\rm rms}_{T} \sim {\rm HalfNormal}(\sigma=p)$ | 1.0 |
AbsorptionModel
AbsorptionModel
is otherwise identical to EmissionModel
, except it predicts 21-cm optical depth spectra. The SpecData
key for this model must be absorption
. The following diagram demonstrates the model, and the subsequent table describe the additional model parameters.
Cloud Parametervariable |
Parameter | Units | Prior, where ($p_0, p_1, \dots$) = prior_{variable} |
Defaultprior_{variable} |
---|---|---|---|---|
log10_NHI |
log10 HI column density | cm-2 |
$\log_{10}N_{\rm HI} \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [20.0, 1.0] |
log10_nHI |
log10 HI density | cm-3 |
$\log_{10}n \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [0.0, 1.0] |
log10_tkin |
log10 kinetic temperature | K |
$\log_{10}T_K \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [3.0, 1.0] |
log10_n_alpha |
log10 Lyα photon density | cm-3 |
$\log_{10}n_\alpha \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [-6.0, 1.0] |
log10_larson_linewidth |
Non-thermal broadening FWHM at 1 pc | km s-1 |
$\log_{10}\Delta V_{\rm 1 pc} \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [0.2, 0.1] |
larson_power |
Nonthermal size-linewidth power law index | unitless | $\alpha \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [0.4, 0.1] |
velocity |
Velocity (same reference frame as data) | km s-1 |
$V \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [0.0, 10.0] |
Hyper Parametervariable |
Parameter | Units | Prior, where ($p_0, p_1, \dots$) = prior_{variable} |
Defaultprior_{variable} |
---|---|---|---|---|
rms_absorption |
Optical depth spectrum rms noise | K |
${\rm rms}_{\tau} \sim {\rm HalfNormal}(\sigma=p)$ | 0.01 |
EmissionAbsorptionModel
Finally, EmissionAbsorptionModel
predicts both 21-cm emission (brightness temperature) and optical depth spectra assuming that both observations trace the same gas. The SpecData
keys must be emission
and absorption
. The following diagram demonstrates the model, and the subsequent table describe the additional model parameters.
Cloud Parametervariable |
Parameter | Units | Prior, where ($p_0, p_1, \dots$) = prior_{variable} |
Defaultprior_{variable} |
---|---|---|---|---|
log10_NHI |
log10 HI column density | cm-2 |
$\log_{10}N_{\rm HI} \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [20.0, 1.0] |
log10_nHI |
log10 HI density | cm-3 |
$\log_{10}n \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [0.0, 1.0] |
log10_tkin |
log10 kinetic temperature | K |
$\log_{10}T_K \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [3.0, 1.0] |
log10_n_alpha |
log10 Lyα photon density | cm-3 |
$\log_{10}n_\alpha \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [-6.0, 1.0] |
log10_larson_linewidth |
Non-thermal broadening FWHM at 1 pc | km s-1 |
$\log_{10}\Delta V_{\rm 1 pc} \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [0.2, 0.1] |
larson_power |
Nonthermal size-linewidth power law index | unitless | $\alpha \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [0.4, 0.1] |
velocity |
Velocity (same reference frame as data) | km s-1 |
$V \sim {\rm Normal}(\mu=p_0, \sigma=p_1)$ | [0.0, 10.0] |
Hyper Parametervariable |
Parameter | Units | Prior, where ($p_0, p_1, \dots$) = prior_{variable} |
Defaultprior_{variable} |
---|---|---|---|---|
rms_emission |
Emission spectrum rms noise | K |
${\rm rms}_{T} \sim {\rm HalfNormal}(\sigma=p)$ | 1.0 |
rms_absorption |
Optical depth spectrum rms noise | K |
${\rm rms}_{\tau} \sim {\rm HalfNormal}(\sigma=p)$ | 0.01 |
ordered
An additional parameter to set_priors
for these models is ordered
. By default, this parameter is False
, in which case the order of the clouds is from nearest to farthest. Sampling from these models can be challenging due to the labeling degeneracy: if the order of clouds does not matter (i.e., the emission is optically thin), then each Markov chain could decide on a different, equally-valid order of clouds.
If we assume that the emission is optically thin, then we can set ordered=True
, in which case the order of clouds is restricted to be increasing with velocity. This assumption can drastically improve sampling efficiency. When ordered=True
, the velocity
prior is defined differently:
Cloud Parametervariable |
Parameter | Units | Prior, where ($p_0, p_1, \dots$) = prior_{variable} |
Defaultprior_{variable} |
---|---|---|---|---|
velocity |
Velocity | km s-1 |
$V_i \sim p_0 + \sum_0^{i-1} V_i + {\rm Gamma}(\alpha=2, \beta=1.0/p_1)$ | [0.0, 1.0] |
Syntax & Examples
See the various tutorial notebooks under docs/source/notebooks. Tutorials and the full API are available here: https://caribou-hi.readthedocs.io.
Issues and Contributing
Anyone is welcome to submit issues or contribute to the development of this software via Github.
License and Copyright
Copyright (c) 2024 Trey Wenger
GNU General Public License v3 (GNU GPLv3)
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file caribou_hi-1.0.0.tar.gz
.
File metadata
- Download URL: caribou_hi-1.0.0.tar.gz
- Upload date:
- Size: 69.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 25571511be308cc5d018c95485ef7e1abe3f999657136283e64359802010d7d5 |
|
MD5 | fecc22a214421f7d20eeba7952203c3f |
|
BLAKE2b-256 | b86ab281ce5d40178aee1141f754aae66791125f901a2193dc199f43037b7ca6 |
File details
Details for the file caribou_hi-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: caribou_hi-1.0.0-py3-none-any.whl
- Upload date:
- Size: 39.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 455758b87eb6372627f9aee4bf039d488be96507918da81b587598495176c1e3 |
|
MD5 | 77b82bd8c3167f69c40671f5338b1967 |
|
BLAKE2b-256 | e849351019513ddc92f5e3a6b2d70a903beece38e75a262ebb7c3e41f053b6f8 |