hierarchical data generation for causal discovery and abstraction
Project description
ProblemSetApproximateCausalDiscovery
from causalspyne import gen_partially_observed
gen_partially_observed(size_micro_node_dag=4,
num_macro_nodes=4,
degree=2, # average vertex/node degree
list_confounder2hide=[0.5, 0.9], # choie of confounder to hide: percentile or index of all toplogically sorted confounders
num_sample=200)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
causalspyne-0.1.1.tar.gz
(10.8 kB
view details)
Built Distribution
File details
Details for the file causalspyne-0.1.1.tar.gz
.
File metadata
- Download URL: causalspyne-0.1.1.tar.gz
- Upload date:
- Size: 10.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.1 CPython/3.9.12 Linux/5.15.0-117-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1f6616cb97794852aaf17f5831dcbf5549b047eeb512a3fca1e4de9443bd60ba |
|
MD5 | 4f96ec66d64ec1debf9249142995fc4e |
|
BLAKE2b-256 | 2b28da7b458be752a175900e138847c9b20c865d99d5d32e041ba3aa5294321b |
File details
Details for the file causalspyne-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: causalspyne-0.1.1-py3-none-any.whl
- Upload date:
- Size: 15.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.1 CPython/3.9.12 Linux/5.15.0-117-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e457428b8683f5c4db6df5d651bf4fc6ae23d54c5e39115b5f09623a5163e517 |
|
MD5 | 2c522c9f0860a0418394c94c0fcecb9f |
|
BLAKE2b-256 | 38dfac3339fe5dcdefebe0b5077056dd48220bb0fe4d40000088f166abb7deee |