Skip to main content

Usefull differ function with Levenshtein distance.

Project description

Python CExtention 2 Sequence Compare Upload pypi.org

Usefull differ function with Levenshtein distance.

How to Install?

pip install cdiffer

Requirement

  • python3.6 or later
  • python2.7

cdiffer.dist

Compute absolute Levenshtein distance of two strings.

Usage

dist(sequence, sequence)

Examples (it's hard to spell Levenshtein correctly):

>>> from cdiffer import dist
>>>
>>> dist('coffee', 'cafe')
3
>>> dist(list('coffee'), list('cafe'))
3
>>> dist(tuple('coffee'), tuple('cafe'))
3
>>> dist(iter('coffee'), iter('cafe'))
3
>>> dist(range(4), range(5))
1
>>> dist('coffee', 'xxxxxx')
6
>>> dist('coffee', 'coffee')
0

cdiffer.similar

Compute similarity of two strings.

Usage

similar(sequence, sequence)

The similarity is a number between 0 and 1, it's usually equal or somewhat higher than difflib.SequenceMatcher.ratio(), because it's based on real minimal edit distance.

Examples

>>> from cdiffer import similar
>>>
>>> similar('coffee', 'cafe')
0.6
>>> similar('hoge', 'bar')
0.0

cdiffer.differ

Find sequence of edit operations transforming one string to another.

Usage

differ(source_sequence, destination_sequence, diffonly=False)

Examples

>>> from cdiffer import differ
>>>
>>> for x in differ('coffee', 'cafe'):
...     print(x)
...
['equal',   0, 0,   'c', 'c']
['replace', 1, 1,   'o', 'a']
['equal',   2, 2,   'f', 'f']
['delete',  3, None,'f',None]
['delete',  4, None,'e',None]
['equal',   5, 3,   'e', 'e']
>>> for x in differ('coffee', 'cafe', diffonly=True):
...     print(x)
...
['replace', 1, 1,   'o', 'a']
['delete',  3, None,'f',None]
['delete',  4, None,'e',None]

Performance

C:\Windows\system>ipython
Python 3.7.7 (tags/v3.7.7:d7c567b08f, Mar 10 2020, 10:41:24) [MSC v.1900 64 bit (AMD64)]
Type 'copyright', 'credits' or 'license' for more information
IPython 7.21.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: from cdiffer import *

In [2]: %timeit dist('coffee', 'cafe')
   ...: %timeit dist(list('coffee'), list('cafe'))
   ...: %timeit dist(tuple('coffee'), tuple('cafe'))
   ...: %timeit dist(iter('coffee'), iter('cafe'))
   ...: %timeit dist(range(4), range(5))
   ...: %timeit dist('coffee', 'xxxxxx')
   ...: %timeit dist('coffee', 'coffee')
   ...:
173 ns ± 0.206 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
741 ns ± 2.4 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
702 ns ± 2.15 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
706 ns ± 7.79 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
882 ns ± 7.51 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
210 ns ± 0.335 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
51.8 ns ± 1.18 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

In [3]: %timeit similar('coffee', 'cafe')
   ...: %timeit similar(list('coffee'), list('cafe'))
   ...: %timeit similar(tuple('coffee'), tuple('cafe'))
   ...: %timeit similar(iter('coffee'), iter('cafe'))
   ...: %timeit similar(range(4), range(5))
   ...: %timeit similar('coffee', 'xxxxxx')
   ...: %timeit similar('coffee', 'coffee')
   ...:
186 ns ± 0.476 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
718 ns ± 0.878 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
691 ns ± 1.42 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
706 ns ± 2.01 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
920 ns ± 8.2 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
223 ns ± 0.938 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
55 ns ± 0.308 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

In [4]: %timeit differ('coffee', 'cafe')
   ...: %timeit differ(list('coffee'), list('cafe'))
   ...: %timeit differ(tuple('coffee'), tuple('cafe'))
   ...: %timeit differ(iter('coffee'), iter('cafe'))
   ...: %timeit differ(range(4), range(5))
   ...: %timeit differ('coffee', 'xxxxxx')
   ...: %timeit differ('coffee', 'coffee')
   ...:
814 ns ± 2.79 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.36 µs ± 2.02 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.33 µs ± 4.19 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.37 µs ± 4.64 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
2.03 µs ± 19.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
865 ns ± 1.89 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
724 ns ± 1.72 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [5]: a = dict(zip('012345', 'coffee'))
   ...: b = dict(zip('0123', 'cafe'))
   ...: %timeit dist(a, b)
   ...: %timeit similar(a, b)
   ...: %timeit differ(a, b)
320 ns ± 1.26 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
327 ns ± 1.2 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
983 ns ± 17.1 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cdiffer-0.1.3.tar.gz (24.1 kB view details)

Uploaded Source

Built Distributions

cdiffer-0.1.3-cp39-cp39-win_amd64.whl (22.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

cdiffer-0.1.3-cp39-cp39-manylinux2014_aarch64.whl (53.9 kB view details)

Uploaded CPython 3.9

cdiffer-0.1.3-cp39-cp39-manylinux2010_x86_64.whl (55.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

cdiffer-0.1.3-cp39-cp39-macosx_10_15_x86_64.whl (22.5 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

cdiffer-0.1.3-cp38-cp38-win_amd64.whl (22.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

cdiffer-0.1.3-cp38-cp38-manylinux2014_aarch64.whl (54.1 kB view details)

Uploaded CPython 3.8

cdiffer-0.1.3-cp38-cp38-manylinux2010_x86_64.whl (55.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

cdiffer-0.1.3-cp38-cp38-macosx_10_15_x86_64.whl (22.5 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

cdiffer-0.1.3-cp37-cp37m-win_amd64.whl (22.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

cdiffer-0.1.3-cp37-cp37m-manylinux2014_aarch64.whl (53.7 kB view details)

Uploaded CPython 3.7m

cdiffer-0.1.3-cp37-cp37m-manylinux2010_x86_64.whl (55.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

cdiffer-0.1.3-cp37-cp37m-macosx_10_15_x86_64.whl (22.4 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

cdiffer-0.1.3-cp36-cp36m-win_amd64.whl (22.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

cdiffer-0.1.3-cp36-cp36m-manylinux2014_aarch64.whl (52.8 kB view details)

Uploaded CPython 3.6m

cdiffer-0.1.3-cp36-cp36m-manylinux2010_x86_64.whl (54.5 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

cdiffer-0.1.3-cp36-cp36m-macosx_10_15_x86_64.whl (22.4 kB view details)

Uploaded CPython 3.6m macOS 10.15+ x86-64

cdiffer-0.1.3-cp27-cp27mu-manylinux2014_aarch64.whl (50.1 kB view details)

Uploaded CPython 2.7mu

cdiffer-0.1.3-cp27-cp27mu-manylinux2010_x86_64.whl (51.5 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

cdiffer-0.1.3-cp27-cp27m-macosx_10_15_x86_64.whl (22.5 kB view details)

Uploaded CPython 2.7m macOS 10.15+ x86-64

File details

Details for the file cdiffer-0.1.3.tar.gz.

File metadata

  • Download URL: cdiffer-0.1.3.tar.gz
  • Upload date:
  • Size: 24.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3.tar.gz
Algorithm Hash digest
SHA256 809b1aa99f5bf26eaa0ddcd60069abf4c0591aa12d9e45c34f8673e19bf8c99f
MD5 44ddbc1006076f0be3dca6bed1ea36d1
BLAKE2b-256 2b8ee37679033e0fa42eaa6064b270d6e65ba4f8924c1b577742dab0e1db7608

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 22.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b5ddc8e91e87b041a9394684e62f064da2af2570bbbe5927e0123f1809a5d68c
MD5 29678238265d020e49c80dae0badfb19
BLAKE2b-256 148560fb888cbb2f7f558447b89fa9db0355cdae509df586cd066e0298db3069

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 53.9 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 44a196628a75d9ca8f86295e93411095bbff33d4cfea171cd94e456ce8d8217d
MD5 beb3226701e717f8af9f582e87f82a85
BLAKE2b-256 fe8de0a42f608e5468698ccc74d411855f5d461a6567b8e897912fd6cb973377

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 55.5 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f7572fc804f1695e342348a091377aed7fa1bdcee8cf33793b69fc96df8c15aa
MD5 22dbdd5161a0ca1e4fce214b207df163
BLAKE2b-256 10a49312762b4779b83602224a870d4dbf862d06b4e58ea358cf2e0c1f7ad39e

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 22.5 kB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ae6be262e4dd3be1b9f340081fc58732677b177a0ef0e5be79a4927df8f03fd7
MD5 3242b9b04a2f0ddd3816231e30c0c2d2
BLAKE2b-256 648fcfd25d25a072a2f444a0f7e9fa3e911af38a29c16eeb7ec19aeb446475e7

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 22.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 358d2cbf88cf30bf7977d12cb883cf2865ccc28e10e7799edaafe7c241292116
MD5 86c30d350ed0d3c981c8d3b51527bc4c
BLAKE2b-256 65e1ccc666ae88fe0d2644b003a2e7435f695ea248af88564747802ed28cbd1a

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 54.1 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d8cf4c319b38ca8c284c701e87dfdd8f1c011b66cbe279dc0d4f27d4fc49635e
MD5 4ae8db81574c8a9a17af0d6965f05a6d
BLAKE2b-256 2e880836b47687cb11d1e3ceafead7f21428f29817b86a6f1b02e79710cfdc76

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 55.6 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d47be9a92043ac8f69fad98745a6568ca021b84c73745c4475fa0e438a2863e8
MD5 5f7813281bc6fc9786d0f10bc996a291
BLAKE2b-256 baac8fb9573b721f929c38e25c524adbb6d5d16a0a94aeb9abeb172de9cd26ee

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 22.5 kB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a304b9f529c22c264da05418cb1dd17032429b460e675f6f279295574833699d
MD5 fe70b72d2adcaa0d072fc93890d21b71
BLAKE2b-256 bc14564dbb29c8a8c01bb43395f4fda7c992e27462561d042deb6490bfc2d4ec

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 22.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 096a1a36dccc273c0155344b0656fce3eb9100607c3ef55b9846a494131ad561
MD5 8651a90c0befd0f18d2f8e00211e5174
BLAKE2b-256 f506b44cf0d2c20949aee4a2ad1404fc10b0b9c7d35af673d9c976dd36e3a554

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 53.7 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f6db21dfd028b0c42c8cae056c669b2e34c1041f56c9b5690f916ef0192870c6
MD5 e8562a4ebca7a9ca3d44d594d54cc82b
BLAKE2b-256 74add5405b883ba9fb80a787bb33663ac5616d34e9b9a66c9b5e4f0273b04ffc

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 55.5 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e03f6436f31c6614403a7cfdb944cf7fc165a1f81ea422539191399f94350718
MD5 0ec5f7e4bd5a1ee10977def45fabff62
BLAKE2b-256 2ed695e00d74b5031bc3c977094b2cb147afa9541f70e24e67fe971c355270dd

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 22.4 kB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d142e86b75eee53f1edf67c5a08ff2b8e111276cddfeb4118c7feb7e53189d37
MD5 a4aae5f8bd7660da6a11e2a052cd1142
BLAKE2b-256 7a422e1133b28229dbf4dda177e832eb4560a19e12c347617b09e5bbbe6cd82f

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 22.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d9d0302eda39a4c43ee10130e65f69b610e01312b5aaac82d87f0c0faf011ef7
MD5 444837219665ca890f6b8adb5175ffe7
BLAKE2b-256 3832b4b97e272db194f4da8169f4f5d882d965fdee0e96e6330f407203acd143

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 52.8 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cdb21807d592159e096d6116b2c2873ecb47006accb6da9263b781b09c990d78
MD5 d5fcb137f21dd57a91c895064a2fd3eb
BLAKE2b-256 a862f58a905f50980e33ad89e257573fb6a4ad057b2221207f8fb305fa2af2d0

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 54.5 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5aca4da01cdb2807ebbf6ab86e7713dd0b03e67b11f512ab74610d4eaeb51e03
MD5 fda5af4bebe135b67689289d0d5ba585
BLAKE2b-256 cbb828a67bc9659196417d0c3c4206d4dd8cfe68625cfa871e6eb1010c69cf3e

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp36-cp36m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp36-cp36m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 22.4 kB
  • Tags: CPython 3.6m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 99ce9cee7e7c8f42801208c7cd21d267b09d9b0d79fdec7a5e177f20ea4c8423
MD5 693c3b7939bc499e9e77fd4800b8f39e
BLAKE2b-256 a44e09d878d34d3af6943b9251138613bf7de1320b98d9618746e47bf0a98169

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp27-cp27mu-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp27-cp27mu-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 50.1 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp27-cp27mu-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c154b766913086c91d3fbb9751cb0a187f5a93dcb32c97abe5dee5a650b1cb58
MD5 d14647f1ca2b27dfb068e3be7ed57fc6
BLAKE2b-256 092f6152a284c0ade17b05c3bbbee9c61ddbf5bc0cc68d0bbc25750d49c4a90d

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 51.5 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f15f3a18a0254dc77843d41a0dc9df859d8fe351ca230dfa3c270efc529beed5
MD5 4511be1a445ae2f70192c32780d3a5b6
BLAKE2b-256 aca1f1b3658608780ac38cba4bd08cc36bdb05cee52d0f1e4d24c7cd8ed606b0

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.3-cp27-cp27m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.3-cp27-cp27m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 22.5 kB
  • Tags: CPython 2.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.3-cp27-cp27m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 697b827f90f22b81f0ffe4b76459d07934898828d8efa4cb9676904262a1d913
MD5 65af99802cae625af18c7128cbc8acee
BLAKE2b-256 647b79ea2feb09090c3a7e7a499e66656bfe71f899b70424077144cc1c4737ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page