Skip to main content

Usefull differ function with Levenshtein distance.

Project description

Python C Extention 2 Sequence Compare

Upload pypi.org

Usefull differ function with Levenshtein distance.

How to Install?

pip install cdiffer

Requirement

  • python3.6 or later
  • python2.7

cdiffer.dist

Compute absolute Levenshtein distance of two strings.

Usage

dist(sequence, sequence)

Examples (it's hard to spell Levenshtein correctly):

>>> from cdiffer import dist
>>>
>>> dist('coffee', 'cafe')
3
>>> dist(list('coffee'), list('cafe'))
3
>>> dist(tuple('coffee'), tuple('cafe'))
3
>>> dist(iter('coffee'), iter('cafe'))
3
>>> dist(range(4), range(5))
1
>>> dist('coffee', 'xxxxxx')
6
>>> dist('coffee', 'coffee')
0

cdiffer.similar

Compute similarity of two strings.

Usage

similar(sequence, sequence)

The similarity is a number between 0 and 1, it's usually equal or somewhat higher than difflib.SequenceMatcher.ratio(), because it's based on real minimal edit distance.

Examples

>>> from cdiffer import similar
>>>
>>> similar('coffee', 'cafe')
0.6
>>> similar('hoge', 'bar')
0.0

cdiffer.differ

Find sequence of edit operations transforming one string to another.

Usage

differ(source_sequence, destination_sequence, diffonly=False)

Examples

>>> from cdiffer import differ
>>>
>>> for x in differ('coffee', 'cafe'):
...     print(x)
...
['equal',   0, 0,   'c', 'c']
['replace', 1, 1,   'o', 'a']
['equal',   2, 2,   'f', 'f']
['delete',  3, None,'f',None]
['delete',  4, None,'e',None]
['equal',   5, 3,   'e', 'e']
>>> for x in differ('coffee', 'cafe', diffonly=True):
...     print(x)
...
['replace', 1, 1,   'o', 'a']
['delete',  3, None,'f',None]
['delete',  4, None,'e',None]

Performance

C:\Windows\system>ipython
Python 3.7.7 (tags/v3.7.7:d7c567b08f, Mar 10 2020, 10:41:24) [MSC v.1900 64 bit (AMD64)]
Type 'copyright', 'credits' or 'license' for more information
IPython 7.21.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: from cdiffer import *

In [2]: %timeit dist('coffee', 'cafe')
   ...: %timeit dist(list('coffee'), list('cafe'))
   ...: %timeit dist(tuple('coffee'), tuple('cafe'))
   ...: %timeit dist(iter('coffee'), iter('cafe'))
   ...: %timeit dist(range(4), range(5))
   ...: %timeit dist('coffee', 'xxxxxx')
   ...: %timeit dist('coffee', 'coffee')
   ...:
173 ns ± 0.206 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
741 ns ± 2.4 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
702 ns ± 2.15 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
706 ns ± 7.79 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
882 ns ± 7.51 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
210 ns ± 0.335 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
51.8 ns ± 1.18 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

In [3]: %timeit similar('coffee', 'cafe')
   ...: %timeit similar(list('coffee'), list('cafe'))
   ...: %timeit similar(tuple('coffee'), tuple('cafe'))
   ...: %timeit similar(iter('coffee'), iter('cafe'))
   ...: %timeit similar(range(4), range(5))
   ...: %timeit similar('coffee', 'xxxxxx')
   ...: %timeit similar('coffee', 'coffee')
   ...:
186 ns ± 0.476 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
718 ns ± 0.878 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
691 ns ± 1.42 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
706 ns ± 2.01 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
920 ns ± 8.2 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
223 ns ± 0.938 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
55 ns ± 0.308 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

In [4]: %timeit differ('coffee', 'cafe')
   ...: %timeit differ(list('coffee'), list('cafe'))
   ...: %timeit differ(tuple('coffee'), tuple('cafe'))
   ...: %timeit differ(iter('coffee'), iter('cafe'))
   ...: %timeit differ(range(4), range(5))
   ...: %timeit differ('coffee', 'xxxxxx')
   ...: %timeit differ('coffee', 'coffee')
   ...:
814 ns ± 2.79 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.36 µs ± 2.02 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.33 µs ± 4.19 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.37 µs ± 4.64 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
2.03 µs ± 19.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
865 ns ± 1.89 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
724 ns ± 1.72 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [5]: a = dict(zip('012345', 'coffee'))
   ...: b = dict(zip('0123', 'cafe'))
   ...: %timeit dist(a, b)
   ...: %timeit similar(a, b)
   ...: %timeit differ(a, b)
320 ns ± 1.26 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
327 ns ± 1.2 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
983 ns ± 17.1 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cdiffer-0.1.6.tar.gz (24.3 kB view details)

Uploaded Source

Built Distributions

cdiffer-0.1.6-cp39-cp39-win_amd64.whl (23.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

cdiffer-0.1.6-cp39-cp39-manylinux2014_aarch64.whl (53.9 kB view details)

Uploaded CPython 3.9

cdiffer-0.1.6-cp39-cp39-manylinux2010_x86_64.whl (55.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

cdiffer-0.1.6-cp39-cp39-macosx_10_15_x86_64.whl (22.5 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

cdiffer-0.1.6-cp38-cp38-win_amd64.whl (23.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

cdiffer-0.1.6-cp38-cp38-manylinux2014_aarch64.whl (54.1 kB view details)

Uploaded CPython 3.8

cdiffer-0.1.6-cp38-cp38-manylinux2010_x86_64.whl (55.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

cdiffer-0.1.6-cp38-cp38-macosx_10_15_x86_64.whl (22.5 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

cdiffer-0.1.6-cp37-cp37m-win_amd64.whl (23.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

cdiffer-0.1.6-cp37-cp37m-manylinux2014_aarch64.whl (53.7 kB view details)

Uploaded CPython 3.7m

cdiffer-0.1.6-cp37-cp37m-manylinux2010_x86_64.whl (55.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

cdiffer-0.1.6-cp37-cp37m-macosx_10_15_x86_64.whl (22.4 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

cdiffer-0.1.6-cp36-cp36m-win_amd64.whl (23.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

cdiffer-0.1.6-cp36-cp36m-manylinux2014_aarch64.whl (52.8 kB view details)

Uploaded CPython 3.6m

cdiffer-0.1.6-cp36-cp36m-manylinux2010_x86_64.whl (54.5 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

cdiffer-0.1.6-cp36-cp36m-macosx_10_15_x86_64.whl (22.4 kB view details)

Uploaded CPython 3.6m macOS 10.15+ x86-64

cdiffer-0.1.6-cp27-cp27mu-manylinux2014_aarch64.whl (50.1 kB view details)

Uploaded CPython 2.7mu

cdiffer-0.1.6-cp27-cp27mu-manylinux2010_x86_64.whl (51.5 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

cdiffer-0.1.6-cp27-cp27m-macosx_10_15_x86_64.whl (22.5 kB view details)

Uploaded CPython 2.7m macOS 10.15+ x86-64

File details

Details for the file cdiffer-0.1.6.tar.gz.

File metadata

  • Download URL: cdiffer-0.1.6.tar.gz
  • Upload date:
  • Size: 24.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6.tar.gz
Algorithm Hash digest
SHA256 5e9ab1f4700a93394b76c0aa3df69eb084c654028c81a2e6e64b69d2c9ec923d
MD5 8c024b7d1f87e5dfd0772302665a1c53
BLAKE2b-256 0a7d5060afba32a3241ba1b8f9b485571893659a5afc58d975c6c636ddce4b1e

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 23.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8fb88e13ac4c01f0c39e7cb7a7c3d8e001df1b6bbad61069c30cf4f8038f0c43
MD5 a773e85d73decef44cbfb0653eb90ac4
BLAKE2b-256 a7df300fafa42bc6a689243f4d88de78f3b86bdac10a64050a062470d2268e1b

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 53.9 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4df19558bd766a91b62655bcffb0d72e85c6ff19d17077715f2e7407ce806cf0
MD5 ab2e290e0a3c6bf4cfe7f6b437304615
BLAKE2b-256 2172fd2d3d21005ee540964afa051c76ac93861b6e6399544763ac7f6d239722

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 55.5 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 80c1e902ecff6dec898457dc03e7f52dfb3c23524a9dc94efa4dc7ec335e3107
MD5 aab052c0d99638ae141edea57f798dab
BLAKE2b-256 101893d6258a0b085b9e758367a3f1c6debf71048b5a4f584d824debcaa3a27a

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 22.5 kB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f0585f956a2ee3c32091c6f380c75e96a5911e28bcfa529c1f317878e66555ac
MD5 313ffd3ab5a200b6066d2a511d00f71f
BLAKE2b-256 0606507e3d8f181732f854de5ecd353fdde189a6bd155fada5cf79b456a30bac

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 23.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0cdf5faf0f685af3f0d0655016946ec8389a57d090d5e23198406d4c8feafa8a
MD5 d91dc1105b50002c211ee781792da945
BLAKE2b-256 4439eba1820bd91bcf74fd20fb503f5339c1e3145ef336189c34637594a8e4fa

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 54.1 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ad94a73c4681b357faa5c4abfd45e7289a58be45aae61f61758f4d5e420bddd0
MD5 0e10f76ddae6f8d1126982815c4327b9
BLAKE2b-256 f49c558653c5d7720162eb5558894cfe936484810c667ae402f6b6cb1d3bc4dd

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 55.6 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e2273ffc8f3234078a905ba55645eee2c7d61559cb5d4723e5afd9a9f1590c47
MD5 8df7bad82fe7f399042a13b5efb286d2
BLAKE2b-256 1e551883a1976ace49a575caf05f85e198f1c0b79721e7085d18ea0a6dfd23c6

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 22.5 kB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6598102d2dd19e20259198f3690c0fd520ebc14ab0564ec534b016a2b5b49d4f
MD5 c0eb728558f65df286aed94e6c90564c
BLAKE2b-256 c1bcafb4e0d077eff4c5814ffdfe4c84d105abfc475b9e7b882622c40e85bd57

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 23.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 775d2517bb75a415ef442f1d455831198c24e6bf2c746a7e1f56397e90ee77e5
MD5 52c5c8c364787404d330272a3469fb98
BLAKE2b-256 4829ea370a410af9c31540fe3e87c34fa4a97a7d346789d37f4c001048573a16

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 53.7 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e684b0cfe3e57cb786820fa8d00998089a4252ea9e2260c23fc1a15c67f6eade
MD5 e5552abd4990519c057279b79dd9d4a6
BLAKE2b-256 9a00fcbdf7f8e42fe568a45ca27f75ce0937ce6012293e8a084bd0869bfed5cb

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 55.5 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 60d7690ad3494e2834ae108d8de8a0fed8ea2a9c2f6d5a4fbd21be43bcb27958
MD5 2d023d94be45af69430dff65a2790199
BLAKE2b-256 66a80f41a8e77d0da4d99392bc548dff3e7ef650785a2895bb2de3501884a614

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 22.4 kB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2690213246001eb1d0afff2fd3d876b299f7ca2a2b2b37a309bdc13073ab47b5
MD5 54937e270b2eb818ce7ae79b35fbeb14
BLAKE2b-256 eb0ec489fbbb41b87e34057020306a1846c8bb76265f7115f1da18b7cb30ab31

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 23.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 4297c9d56015279e05fa0ad058cb879a2b9f31e860d34605dee3e53db68333da
MD5 8a76323b56cea8d8d367bfc2f9b4ee5f
BLAKE2b-256 4b6e1752cfd94cb136cd0cf922c2c6faf34f0a3c19e24cd66ce1877fc5ffa357

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 52.8 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 533fda3fe920ede531a66f10e18a95aee16337fa7c5aff9d302fc1b00370f553
MD5 49303cab7e1d12b886dce4cd8e17b042
BLAKE2b-256 a65482a194bbda258570ed8141dbcff3244daa9593c9a0f9831e7a447cddc762

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 54.5 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 052af1e0905e2f6a98803852405ad0b6e9bdc65ae447da3f548b908b528ef91b
MD5 942e195f7465925577754611449098c6
BLAKE2b-256 d8a3ed309ac28de80da9e5c349ed86b274369338f2d1c0c5f0bdbe8342f44c38

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp36-cp36m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp36-cp36m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 22.4 kB
  • Tags: CPython 3.6m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 fe6a9f26f05d551216a9cdad94d384382cfd42e05b7e511e40f59ffac0ec9e3d
MD5 baadcbb5672fd4cc4baa29332384122a
BLAKE2b-256 1b7a4931a4b86ca321bca042528a6941be1c26acdab27e433de00ff9ca5b3e8e

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp27-cp27mu-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp27-cp27mu-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 50.1 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp27-cp27mu-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 73cbfeb70a5dec158d8d53f9e99d377289973fc86976a9909f3de59debf007eb
MD5 39653c32e9accb4c77520783ef42d7ac
BLAKE2b-256 67a839f15dc761b611ba7ff7b7d3004688b1008f44af861159fdacdd56c8288d

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 51.5 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d1e567d663a7881a3d45bce1b37bb9dee6b69a2a5aa88b006271a348fed62cfe
MD5 7968cc2ad83046c2a0d7cf9d8496205e
BLAKE2b-256 9716770e4e3ea5d8e7ad7d28d621a0ccfd3bff8954c3ce4c13219750f1dab475

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.6-cp27-cp27m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.6-cp27-cp27m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 22.5 kB
  • Tags: CPython 2.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.6-cp27-cp27m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e8a4efb99a8bab051b012836a334a70e3abc951c71464eaaa9db2cbad2c53aff
MD5 5445e954f2aef623e53f04223c6e0b75
BLAKE2b-256 842b442210aa4764262c8e6240d2df4174a2027b7c929bc40fc340462bac3b4c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page