chart
Project description
A zero-dependency python package that prints basic charts to a Jupyter output
Charts supported:
- Bar graphs
- Scatter plots
- Histograms
- ๐๐๐
Examples
Bar graphs can be drawn quickly with the bar
function:
from chart import bar
x = [500, 200, 900, 400]
y = ['marc', 'mummify', 'chart', 'sausagelink']
bar(x, y)
marc: โโโโโโโโโโโโโโโโโ
mummify: โโโโโโโ
chart: โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
sausagelink: โโโโโโโโโโโโโ
And the bar
function can accept columns from a pd.DataFrame
:
from chart import bar
import pandas as pd
df = pd.DataFrame({
'artist': ['Tame Impala', 'Childish Gambino', 'The Knocks'],
'listens': [8_456_831, 18_185_245, 2_556_448]
})
bar(df.listens, df.artist, width=20, label_width=11, mark='๐')
Tame Impala: ๐๐๐๐๐๐๐๐๐
Childish Ga: ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐
The Knocks: ๐๐๐
Histograms are just as easy:
from chart import histogram
x = [1, 2, 4, 3, 3, 1, 7, 9, 9, 1, 3, 2, 1, 2]
histogram(x)
โ
โ
โ
โ
โ โ
โ โ
โ โ
โ โ โ
โ โ โ
โ โ โ โ
And they can accept objects created by scipy
:
from chart import histogram
import scipy.stats as stats
import numpy as np
np.random.seed(14)
n = stats.norm(loc=0, scale=10)
histogram(n.rvs(100), bins=14, height=7, mark='๐')
๐
๐ ๐
๐ ๐ ๐
๐ ๐ ๐
๐ ๐ ๐ ๐
๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐
๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐
Scatter plots can be drawn with a simple scatter
call:
from chart import scatter
x = range(0, 20)
y = range(0, 20)
scatter(x, y)
โข
โข โข
โข
โข โข
โข โข
โข
โข โข
โข
โข โข
โข โข
โข
โข โข
โข
And at this point you gotta know it works with any np.array
:
from chart import scatter
import numpy as np
np.random.seed(1)
N = 100
x = np.random.normal(100, 50, size=N)
y = x * -2 + 25 + np.random.normal(0, 25, size=N)
scatter(x, y, width=20, height=9, mark='^')
^^
^
^^^
^^^^^^^
^^^^^^
^^^^^^^
^^^^
^^^^^ ^
^^ ^
In fact, all chart
functions work with pandas, numpy, scipy and regular python objects.
Preprocessors
In order to create the simple outputs generated by bar
, histogram
, and scatter
I had to create a couple of preprocessors, namely: NumberBinarizer
and RangeScaler
.
I tried to adhere to the scikit-learn API in their construction. Although you won't need them to use chart
here they are for your tinkering:
from chart.preprocessing import NumberBinarizer
nb = NumberBinarizer(bins=4)
x = range(10)
nb.fit(x)
nb.transform(x)
[0, 0, 0, 1, 1, 2, 2, 3, 3, 3]
from chart.preprocessing import RangeScaler
rs = RangeScaler(out_range=(0, 10), round=False)
x = range(50, 59)
rs.fit_transform(x)
[0.0, 1.25, 2.5, 3.75, 5.0, 6.25, 7.5, 8.75, 10.0]
Installation
pip install chart
Contribute
For feature requests or bug reports, please use Github Issues
Inspiration
I wanted a super-light-weight library that would allow me to quickly grok data. Matplotlib had too many dependencies, and Altair seemed overkill. Though I really like the idea of termgraph, it didn't really fit well or integrate with my Jupyter workflow. Here's to chart
๐ฅ (still can't believe I got it on PyPI)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file chart-0.2.3.tar.gz
.
File metadata
- Download URL: chart-0.2.3.tar.gz
- Upload date:
- Size: 5.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 66a9eac885d3479d00c0312663b2e18313997a1bb6cfb014e50026e9a83c9ac5 |
|
MD5 | 8b0cfff12f565bf59bd92de4e7efd49d |
|
BLAKE2b-256 | b3e0b10edf6b4ed5d4bc26b8d9b63d769b85efac89f186a733c73147561f1dd3 |