Skip to main content

Create a Python package.

Project description

image image image

🔥ChatLLM 基于知识库🔥

Install

pip install -U chatllm

Docs

Usages

from chatllm.applications import ChatBase

qa = ChatBase()
qa.load_llm4chat(model_name_or_path="THUDM/chatglm-6b")

for i, _ in qa(query='周杰伦是谁', knowledge_base='周杰伦是傻子'):
    pass
# 根据已知信息无法回答该问题,因为周杰伦是中国内地流行歌手、演员、音乐制作人、导演,
# 是具有一定的知名度和专业能力的人物,没有提供足够的信息无法判断他是傻子。
Click to ChatPDF
from chatllm.applications.chatpdf import ChatPDF

qa = ChatPDF(encode_model='nghuyong/ernie-3.0-nano-zh')
qa.load_llm4chat(model_name_or_path="THUDM/chatglm-6b")
for i, _ in qa(query='东北证券主营业务'):
    pass
# 根据已知信息,东北证券的主营业务为证券业务。公司作为证券公司,主要从事证券经纪、证券投资咨询、与证券交易、
# 证券投资活动有关的财务顾问、证券承销与保荐、证券自营、融资融券、证券投资基金代销和代销金融产品待业务。

向量召回结果

Click to 开发部署
  • ChatGLM-6B 模型硬件需求

    量化等级 最低 GPU 显存(推理) 最低 GPU 显存(高效参数微调)
    FP16(无量化) 13 GB 14 GB
    INT8 8 GB 9 GB
    INT4 6 GB 7 GB
  • Embedding 模型硬件需求

    本项目中默认选用的 Embedding 模型 GanymedeNil/text2vec-large-chinese 约占用显存 3GB,也可修改为在 CPU 中运行。

开发部署

软件需求

本项目已在 Python 3.8 - 3.10,CUDA 11.7 环境下完成测试。已在 Windows、ARM 架构的 macOS、Linux 系统中完成测试。

从本地加载模型

请参考 THUDM/ChatGLM-6B#从本地加载模型

1. 安装环境

参见 安装指南

Click to TODO
  • 增加UI

  • 增加ChatPDF

  • 增加本地知识库组件

  • 增加互联网搜索组件

  • 增加知识图谱组件

  • 增加微调模块

  • 增加流式输出

  • 增加http接口

  • 增加grpc接口


ChatGLM-6B Mac 本地部署实操记录

======= History

0.0.0 (2023-04-11)

  • First release on PyPI.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ChatLLM-2023.4.26.16.30.14.tar.gz (7.7 MB view details)

Uploaded Source

Built Distribution

ChatLLM-2023.4.26.16.30.14-py3-none-any.whl (27.2 kB view details)

Uploaded Python 3

File details

Details for the file ChatLLM-2023.4.26.16.30.14.tar.gz.

File metadata

  • Download URL: ChatLLM-2023.4.26.16.30.14.tar.gz
  • Upload date:
  • Size: 7.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for ChatLLM-2023.4.26.16.30.14.tar.gz
Algorithm Hash digest
SHA256 9cb288fecb00f6dcc72232623a83689062bd6d76fd2584e9b129c1fcfc5a9972
MD5 9c41dd50db7d9d5d272b5bbdbf9b33bb
BLAKE2b-256 73332fcb726d7c6160a1d44265a6c336aba8a6318f3f9da48544408730ee3e04

See more details on using hashes here.

File details

Details for the file ChatLLM-2023.4.26.16.30.14-py3-none-any.whl.

File metadata

File hashes

Hashes for ChatLLM-2023.4.26.16.30.14-py3-none-any.whl
Algorithm Hash digest
SHA256 775d80a818d258d47dfa58d2a5badaa98974f41f60d937ebd34bc284fb8d2f7a
MD5 4052acebac19587cc3d7529205bb83d4
BLAKE2b-256 6f9543ce32556107c8f9e96ddcb26a8aa2920741038303baacee044f484035ec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page