Skip to main content

This is a pre-release.

Project description

<img src=”cimcb_logo.png” alt=”drawing” width=”400”/>

# cimcb cimcb package containing the necessary tools for the statistical analysis of untargeted and targeted metabolomics data.

## Installation

### Dependencies cimcb requires: - Python (>=3.5) - Bokeh (>=1.0.0) - Keras - NumPy (>=1.12) - SciPy - scikit-learn - Statsmodels - TensorFlow - tqdm

### User installation The recommend way to install cimcb and dependencies is to using conda: `console conda install -c cimcb cimcb ` or pip: `console pip install cimcb ` Alternatively, to install directly from github: `console pip install https://github.com/KevinMMendez/cimcb/archive/master.zip `

### Tutorial Open with Binders:

[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/KevinMMendez/BinderTutorial_Workflow/master?filepath=BinderTutorial_Workflow.ipynb)

### API For futher detail on the usage refer to the docstring.

#### cimcb.model - [PLS_SIMPLS](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PLS_SIMPLS.py#L14-L36): Partial least-squares regression using the SIMPLS algorithm. - [PCR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCR.py#L8-L29): Principal component regression. - [PCLR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCLR.py#L8-L29): Principal component logistic regression. - [RF](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RF.py#L8-L9): Random forest. - [SVM](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/SVM.py#L8-L9): Support Vector Machine. - [RBF_NN](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RBF_NN.py#L8-L9): Radial basis function neural network. - [NN_LinearLinear](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLinear.py#L7-L8): 2 Layer linear-linear neural network. - [NN_LinearLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLogit.py#L7-L8): 2 Layer linear-logistic neural network. - [NN_LogitLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LogitLogit.py#L7-L8): 2 Layer logistic-logistic neural network.

#### cimcb.plot - [boxplot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/boxplot.py#L8-L18): Creates a boxplot using Bokeh. - [distribution](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/distribution.py#L6-L16): Creates a distribution plot using Bokeh. - [pca](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/pca.py#L10-L17): Creates a PCA scores and loadings plot using Bokeh. - [permutation_test](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/permutation_test.py#L13-L27): Creates permutation test plots using Bokeh. - [roc_plot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/roc.py#L11-L24): Creates a rocplot using Bokeh. - [scatter](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatter.py#L6-L16): Creates a scatterplot using Bokeh. - [scatterCI](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatterCI.py#L7-L14): Creates a scatterCI plot using Bokeh.

#### cimcb.cross_val - [kfold](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/cross_val/kfold.py#L14-L42): Exhaustitive search over param_dict calculating binary metrics.

#### cimcb.bootstrap - [Perc](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/Perc.py#L6-L35): Returns bootstrap confidence intervals using the percentile boostrap interval. - [BC](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BC.py#L8-L37): Returns bootstrap confidence intervals using the bias-corrected boostrap interval. - [BCA](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BCA.py#L8-L36): Returns bootstrap confidence intervals using the bias-corrected and accelerated boostrap interval.

#### cimcb.utils - [binary_metrics](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/binary_metrics.py#L5-L23): Return a dict of binary stats with the following metrics: R2, auc, accuracy, precision, sensitivity, specificity, and F1 score. - [ci95_ellipse](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/ci95_ellipse.py#L6-L28): Construct a 95% confidence ellipse using PCA. - [knnimpute](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/knnimpute.py#L7-L22): kNN missing value imputation using Euclidean distance. - [load_dataXL](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/load_dataXL.py#L7-L29): Loads and validates the DataFile and PeakFile from an excel file. - [nested_getattr](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/nested_getattr.py#L4-L5): getattr for nested attributes. - [scale](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/scale.py#L4-L42): Scales x (which can include nans) with method: ‘auto’, ‘pareto’, ‘vast’, or ‘level’. - [table_check](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/table_check.py#L4-L17): Error checking for DataTable and PeakTable (used in load_dataXL). - [univariate_2class](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/univariate_2class.py#L8-L35): Creates a table of univariate statistics (2 class). - [wmean](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/wmean.py#L4-L19): Returns Weighted Mean. Ignores NaNs and handles infinite weights.

### License cimcb is licensed under the ___ license.

### Authors - Kevin Mendez - [David Broadhurst](https://scholar.google.ca/citations?user=M3_zZwUAAAAJ&hl=en)

### Correspondence Professor David Broadhurst, Director of the Centre for Integrative Metabolomics & Computation Biology at Edith Cowan University. E-mail: d.broadhurst@ecu.edu.au

### Citation If you would cite cimcb in a scientific publication, you can use the following: ___

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cimcb-1.0.1.tar.gz (45.8 kB view hashes)

Uploaded Source

Built Distribution

cimcb-1.0.1-py3-none-any.whl (77.0 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page