Fast ISO8601 date time parser for Python written in C
Project description
ciso8601 converts ISO8601 date time strings into Python datetime objects. Since it’s written as a C module, it is much faster than other Python libraries. Tested with Python 2.7 + 3.4 + 3.5.
(Interested in working on projects like this? Close.io is looking for great engineers to join our team)
Usage
% pip install ciso8601
In [1]: import ciso8601
In [2]: ciso8601.parse_datetime('2014-12-05T12:30:45.123456-05:30')
Out[2]: datetime.datetime(2014, 12, 5, 12, 30, 45, 123456, tzinfo=pytz.FixedOffset(330))
In [3]: ciso8601.parse_datetime('20141205T123045')
Out[3]: datetime.datetime(2014, 12, 5, 12, 30, 45)
In [4]: ciso8601.parse_datetime_unaware('2014-12-05T12:30:45.123456-05:30')
Out[4]: datetime.datetime(2014, 12, 5, 12, 30, 45, 123456)
Benchmark
Date time string with no time zone information:
In [1]: import datetime, aniso8601, iso8601, isodate, dateutil.parser, arrow, ciso8601
In [2]: ds = u'2014-01-09T21:48:00.921000'
In [3]: %timeit ciso8601.parse_datetime(ds)
1000000 loops, best of 3: 204 ns per loop
In [4]: %timeit datetime.datetime.strptime(ds, "%Y-%m-%dT%H:%M:%S.%f")
100000 loops, best of 3: 15 µs per loop
In [5]: %timeit dateutil.parser.parse(ds)
10000 loops, best of 3: 122 µs per loop
In [6]: %timeit aniso8601.parse_datetime(ds)
10000 loops, best of 3: 28.9 µs per loop
In [7]: %timeit iso8601.parse_date(ds)
10000 loops, best of 3: 42 µs per loop
In [8]: %timeit isodate.parse_datetime(ds)
10000 loops, best of 3: 69.4 µs per loop
In [9]: %timeit arrow.get(ds).datetime
10000 loops, best of 3: 87 µs per loop
ciso8601 takes 0.204us, which is 73x faster than datetime’s strptime, which is not a full ISO8601 parser. It is 141x faster than aniso8601, the next fastest ISO8601 parser in this comparison.
Date time string with time zone information:
In [1]: import datetime, aniso8601, iso8601, isodate, dateutil.parser, arrow, ciso8601
In [2]: ds = u'2014-01-09T21:48:00.921000+05:30'
In [3]: %timeit ciso8601.parse_datetime(ds)
1000000 loops, best of 3: 525 ns per loop
In [4]: %timeit dateutil.parser.parse(ds)
10000 loops, best of 3: 162 µs per loop
In [5]: %timeit aniso8601.parse_datetime(ds)
10000 loops, best of 3: 36.8 µs per loop
In [6]: %timeit iso8601.parse_date(ds)
10000 loops, best of 3: 53.5 µs per loop
In [7]: %timeit isodate.parse_datetime(ds)
10000 loops, best of 3: 82.6 µs per loop
In [8]: %timeit arrow.get(ds).datetime
10000 loops, best of 3: 104 µs per loop
Even with time zone information, ciso8601 is 70x as fast as aniso8601.
Tested on Python 2.7.10 on macOS 10.12.6 using the following modules:
aniso8601==1.2.1
arrow==0.10.0
ciso8601==1.0.4
iso8601==0.1.12
isodate==0.5.4
python-dateutil==2.6.1
Supported formats
Dates may have one of the following formats:
YYYYMMDD
YYYY-MM-DD
YYYY-MM
Week dates or ordinal dates are not currently supported.
Times are optional and are separated by the letter T or also by space (unlike ISO8601). The following time formats are supported:
hh
hhmm or hh:mm
hhmmss or hh:mm:ss
Fractions of a second may be provided, separated by . or ,. Up to 6 digits are supported, excessive digits will be ignored.
Time zone information may be provided in one of the following formats:
Z
±hh
±hh:mm
±hhmm
If time zone information is provided, an aware datetime object will be returned. Otherwise, the datetime is unaware. Please note that it takes more time to parse aware datetimes, especially if they’re not in UTC. If you don’t care about time zone information, use the parse_datetime_unaware method, which will discard any time zone information and is faster. Parsing aware date times requires the pytz module, otherwise time zone information is ignored and unaware datetimes are returned.
If parsing fails, None will be returned. The parser will attempt to parse as much of the date time as possible.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.