CKIP CoreNLP
Project description
Official CKIP CoreNLP Toolkits
Features
Sentence Segmentation
Word Segmentation
Part-of-Speech Tagging
Named-Entity Recognition
Sentence Parsing
Co-Reference Resolution
Git
PyPI
Documentation
Online Demo
Contributers
Wei-Yun Ma at CKIP (Maintainer)
Installation
Requirements
Python 3.6+
TreeLib 1.5+
CkipTagger 0.1.1+ [Optional, Recommended]
CkipClassic 1.0+ [Optional]
TensorFlow / TensorFlow-GPU 1.13.1+, <2 [Required by CkipTagger]
Driver Requirements
Driver |
Built-in |
CkipTagger |
CkipClassic |
---|---|---|---|
Sentence Segmentation |
✔ |
||
Word Segmentation† |
✔ |
✔ |
|
Part-of-Speech Tagging† |
✔ |
✔ |
|
Sentence Parsing |
✔ |
||
Named-Entity Recognition |
✔ |
||
Co-Reference Resolution‡ |
✔ |
✔ |
✔ |
† These drivers require only one of either backends.
‡ Co-Reference implementation does not require any backend, but requires results from word segmentation, part-of-speech tagging, sentence parsing, and named-entity recognition.
Installation via Pip
No backend (not recommended): pip install ckipnlp.
With CkipTagger backend (recommended): pip install ckipnlp[tagger] or pip install ckipnlp[tagger-gpu].
With CkipClassic backend: Please refer https://ckip-classic.readthedocs.io/en/latest/main/readme.html#installation for CkipClassic installation guide.
Usage
See https://ckipnlp.readthedocs.io/en/latest/main/usage.html for Usage.
See https://ckipnlp.readthedocs.io/en/latest/_api/ckipnlp.html for API details.
License
Copyright (c) 2018-2020 CKIP Lab under the CC BY-NC-SA 4.0 License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.