Project description
Classifier-trains
Install as a package
pip3 install classifier-trains
Examples of Pipeline Configuration
For example of pipeline configuration, please see pipeline_config_only_train.yml , pipeline_config_only_eval.yml , full_pipeline_config.yml .
# Run training or evaluation
python3 -m classifier_trains run --config <path to yml config> --output_dir <output_dir>
# Run training or evaluation with profiling, which will generate a profile report
python3 -m classifier_trains profile --config <path to yml config> --output_dir <output_dir>
# Compute mean and std of dataset
python3 -m classifier_trains compute-mean-and-std --dir-path <path to dataset>
# Get output mapping of dataset
python3 -m classifier_trains get-output-mapping --dir-path <path to dataset>
Expected Folder Structure for Dataset
Dataset Directory
├── train
│ ├── <class1>
│ │ ├── <image1>
│ │ └── ...
│ └── <class2>
│ ├── <image1>
│ └── ...
├── val
│ ├── <class1>
│ │ ├── <image1>
│ │ └── ...
│ └── <class2>
│ ├── <image1>
│ └── ...
└── eval
├── <class1>
│ ├── <image1>
│ └── ...
└── <class2>
├── <image1>
└── ...
Pipeline Parameter Table
Pipeline Parameters
Parameter
Description
Type
Default
Choices
enable_training
Enable training
bool
False
True, False
enable_evaluation
Enable evaluation
bool
False
True, False
Model Parameters
Parameter
Description
Type
Default
Choices
model
Model architecture to use
str
/
resnet18, resnet34, resnet50, resnet152, vgg11, vgg11_bn, vgg13, vgg13_bn, vgg16, vgg16_bn, vgg19, vgg19_bn, squeezenet1_0, squeezenet1_1, densenet121, densenet161, densenet169, densenet201, inception_v3
num_classes
Number of classes
int
/
Any positive integer
weights
Pretrained weights
str
DEFAULT
Check PyTorch Documentation
checkpoint_path
Path to checkpoint
Optional[str]
None
Self defined path
Dataloader Parameters
Parameter
Description
Type
Default
Choices
batch_size
Batch size
int
/
Any positive integer
num_workers
Number of workers
int
0
Any non negative integer
Resize Parameters
Parameter
Description
Type
Default
Choices
width
Width of resized image
int
/
Any positive integer
height
Height of resized image
int
/
Any positive integer
interpolation
Interpolation method
str
bicubic
nearest, nearest_exact, bilinear, bicubic
padding
Padding
Optional[str]
None
top_left, top_right, bottom_left, bottom_right, center
maintain_aspect_ratio
Maintain aspect ratio
bool
False
True, False
Spatial Transform Parameters
Parameter
Description
Type
Default
Choices
hflip_prob
Horizontal flip probability
float
/
Any float between 0 and 1
vflip_prob
Vertical flip probability
float
/
Any float between 0 and 1
max_rotate_in_degree
Maximum rotation in degree
float
0.0
Any non negative float
allow_center_crop
Allow center crop
bool
False
True, False
allow_random_crop
Allow random crop
bool
False
True, False
Color Transform Parameters
Parameter
Description
Type
Default
Choices
allow_gray_scale
Allow gray scale
bool
False
True, False
allow_random_color
Allow random color
bool
False
True, False
Preprocessing Parameters
Parameter
Description
Type
Default
Choices
mean
Mean of dataset
List[float]
/
Any list of floats
std
Standard deviation of dataset
List[float]
/
Any list of floats
Optimizer Parameters
Parameter
Description
Type
Default
Choices
name
Optimizer to use
str
/
sgd, adam, rmsprop, adamw
lr
Learning rate
float
/
Any positive float
weight_decay
Weight decay
float
0.0
Any non negative float
momentum
Momentum
Optional[float]
None
Any non negative float
alpha
Alpha
Optional[float]
None
Any non negative float
betas
Betas
Optional[Tuple[float, float]]
None
Any tuple of non negative floats
Scheduler Parameters
Parameter
Description
Type
Default
Choices
name
Scheduler to use
str
/
step, consine
lr_min
Minimum learning rate
Optional[float]
None
Any non negative float
step_size
Step size
Optional[int]
None
Any positive integer
gamma
Gamma
Optional[float]
None
Any non negative float
Training Parameters
Parameter
Description
Type
Default
Choices
name
Name of the experiment
str
/
Any string
num_epochs
Number of epochs
int
/
Any positive integer
trainset_dir
Path to training dataset
str
/
Any string
valset_dir
Path to validation dataset
str
/
Any string
testset_dir
Path to testing dataset
Optional[str]
None
Any string
device
Device to use
str
cuda
cpu, cuda, etc.
max_num_hrs
Maximum number of hours to run
Optional[float]
None
Any non negative float
criterion
What criterion to use for best model
str
loss
loss, accuracy
validate_every
Validate every n epochs
int
1
Any positive integer
save_every
Save model every n epochs
int
3
Any positive integer
patience
Patience for early stopping
int
5
Any positive integer
random_seed
Random seed
int
42
Any positive integer
precision
Precision
int
64
16, 32, 64
export_last_as_onnx
Export last model as ONNX
bool
False
True, False
export_best_as_onnx
Export best model as ONNX
bool
False
True, False
Evaluation Parameters
Parameter
Description
Type
Default
Choices
name
Name of the experiment
str
/
Any string
evalset_dir
Path to evaluation dataset
str
/
Any string
device
Device to use
str
cuda
cpu, cuda, etc.
precision
Precision
int
64
16, 32, 64
random_seed
Random seed
int
42
Any positive integer
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages .
Source Distribution
Built Distribution
File details
Details for the file classifier_trains-1.2.1.tar.gz
.
File metadata
Download URL: classifier_trains-1.2.1.tar.gz
Upload date:
Jun 22, 2025
Size: 19.5 kB
Tags: Source
Uploaded using Trusted Publishing? No
Uploaded via: poetry/1.8.4 CPython/3.11.12 Linux/6.8.0-1029-azure
File hashes
Hashes for classifier_trains-1.2.1.tar.gz
Algorithm
Hash digest
SHA256
d6ae3ddb782eedb3f182ea4f4eeccba65c7745d753e3aeb707717064398812fd
Copy
MD5
a5d33607e3237485e841c45a6dc738f1
Copy
BLAKE2b-256
3b2b4cdf052e3af1fb02e20b2c97f15255a9debe537b51cd00bb70234e30b24f
Copy
See more details on using hashes here.
File details
Details for the file classifier_trains-1.2.1-py3-none-any.whl
.
File metadata
Download URL: classifier_trains-1.2.1-py3-none-any.whl
Upload date:
Jun 22, 2025
Size: 25.2 kB
Tags: Python 3
Uploaded using Trusted Publishing? No
Uploaded via: poetry/1.8.4 CPython/3.11.12 Linux/6.8.0-1029-azure
File hashes
Hashes for classifier_trains-1.2.1-py3-none-any.whl
Algorithm
Hash digest
SHA256
91d98d2b140974657ea11695e42430c8616ed49ffb8fdca3393072073fa9e6ee
Copy
MD5
0a50c4c7387881bffb19e49f9b34772d
Copy
BLAKE2b-256
976bf7d79f2f21b9813445950ab8977fbc40763a65f2b0b379139304de6d9cc3
Copy
See more details on using hashes here.