Skip to main content

ProSem - Probing and Classifying Semantic Spans

Project description

CLTrier ProSem

Usage

from cltrier_prosem import Pipeline

# init pipeline object (load model, data, trainer)
pipeline = Pipeline({
    'encoder': {
        'model': 'deepset/gbert-base',  # huggingface model slug 
    },
    'dataset': {
        'path': './path/data',  # path to data directory (containing train/test.parquet)
        'text_column': 'text',  # column containing src text
        'label_column': 'label',  # column containing target label
        'label_classes': ['class_1', 'class_2'],  # list of target classes
    },
    'classifier': {
        'hid_size': 512,  # size of classifier perceptron
        'dropout': 0.2,  # dropout value
    },
    'pooler': {
        'form': 'cls',
        # type of pooling, possible values: 
        # 'cls', 'sent_mean', 'subword_{first|last|mean|min|max}'
        # if subword probing used
        'span_columns': ['span']
    },
    'trainer': {
        'num_epochs': 5,  # number of training epochs
        'batch_size': 32,  # batch size in both training and evaluation
        'learning_rate': 1e-3,  # trainer learning rate
        'export_path': './path/output',  # output path for logging and results
    },
})

# call pipeline object (training and evaluation)
pipeline()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cltrier_prosem-0.4.3.tar.gz (2.5 MB view details)

Uploaded Source

Built Distribution

cltrier_prosem-0.4.3-py3-none-any.whl (15.8 kB view details)

Uploaded Python 3

File details

Details for the file cltrier_prosem-0.4.3.tar.gz.

File metadata

  • Download URL: cltrier_prosem-0.4.3.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.31.0

File hashes

Hashes for cltrier_prosem-0.4.3.tar.gz
Algorithm Hash digest
SHA256 e0196b5f9380ed976f9a415434aa448fd5ec448b259be4b838b5bee556675f6f
MD5 18a784b19904300ab3b314262c4ee41c
BLAKE2b-256 51538a5d8ff5b15af39d33c73d5286d562f3df7cf4a1f2e43de9a5b6e759e1c4

See more details on using hashes here.

Provenance

File details

Details for the file cltrier_prosem-0.4.3-py3-none-any.whl.

File metadata

File hashes

Hashes for cltrier_prosem-0.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 a8f1361d0c1aeadb760a43367f34b2d5df4258716a31d4914548be0daa25d830
MD5 1e0f7e53c7866d492888a05fdf8f3e50
BLAKE2b-256 df91d86ec9cc8c79edbd4cc7a69c959911e91ffe5f1f4faf9876aa7ba4c75eef

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page